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NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto. i
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INTRODUCTION

This Appendix contains the reprints published under JSEP in the time

September 1991 to September 1992.

In addition to the reprints contained herein, there are 7 papers already

accepted for publication during the next contract period, 11 papers submitted

and 11 papers in preparation.
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JSEP REFEREED JOURNAL PAPERS I
PUBLISHED SEPTEMBER 1991 TO SEPTEMBER 1992

1. E.H. Newman and K. Kingsley, "An Introduction to the Method of I
Moments," Computer Physics Communications, vol. 68, 1991, pp. 1-
18, (invited paper).

2. R.J. Burkholder, R.-C. Chou and P.H. Pathak, "Two Ray Shooting
Methods for Computing the EM Scattering by Large Open-Ended Cav-
ities," Computer Physics Communications, 1991, pp. 353-365, (invited
paper).

3. R.J. Burkholder and P.H. Pathak, "Analysis of EM Penetration into i
and Scattering by Electrically Large Open Waveguide Cavities Using
Gaussian Beam Shooting," Proceedings of the IEEE, vol. 79, no. 10,
October 1991, pp. 1401-1412.

4. J. Li and R.T. Compton, Jr., "Angle Estimation using a Polarization
Sensitive Array," IEEE Transactions on Antennas and Propagation,
vol. 39, October 1991, pp. 1539-1543.

5. M.S. Kluskens and E.H. Newman, "A Microstrip Line on a Chiral I
Substrate," IEEE Transactions on Microwave Theory and Techniques,
vol. 39, November 1991, pp. 1889-1991. 3

6. M.S. Kluskens and E.H. Newman, "Scattering by a Chiral Cylinder
of Arbitrary Cross Section in the Presence of a Half-Plane," Journal
Electromagnetic Waves and Applications, vol. 6, 1992, pp. 721-731.

7. P.H. Pathak, "High Frequency Techniques for Antenna Analysis," Pro-
ceedings of IEEE, vol. 80, no. 1, January 1992, pp. 44-65, (invited U
paper).

8. S. Barkeshli and P.H. Pathak, "On the Dyadic Green's Function for a
Planar Multilayered Dielectric/Magnetic Media," IEEE Transactions
on Microwave Theory and Techniques, vol. 40, no. 1, January 1992,
pp. 128-142.

9. J. Ward and R.T. Compton, Jr., "Improving the Performance of a
Slotted ALOHA Packet Radio Network with an Adaptive Array,"
IEEE Transactions on Communications, vol. 40, no. 2, February 1992,
pp. 292-300.

10. R. Lee and A.C. Cangellaris, "A Study of Discretization Error in the
Finite Element Approximation of Wave Solutions," IEEE Transactions
on Antennas and Propagation, vol. 40, May 1992, pp. 542-549.
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11. J. Li and R.T. Compton, Jr., "Two Dimensional Angle and Polariza-
tion Estimation Using the ESPRIT Algorithm," IEEE Transactions on
Antennas and Propagation, vol. 40, no. 5, May 1992, pp. 550-555.

12. G.A. Somers and P.H. Pathak, "Uniform GTD Solution for the Diffrac-
tion by Metallic Tapes on Panelled Compact-Range Reflectors," IEE
Proceedings-H, vol. 139, no. 3, June 1992, pp. 297-305.

13. R.G. Rojas, "Integral Equations for the Scattering by a Three Dimen-
sional Inhomogeneous Chiral Body," Journal Electromagnetic Waves
and Applications, vol. 6, no. 5/6, July 1992, pp. 733-750.

14. F.W. Vook and R.T. Compton, Jr., "Bandwidth Performance of Lin-
ear Adaptive Arrays with Tapped Delay-Line Processing," (Corre-
spondence), IEEE Transactions on Aerospace and Electronic Systems,
vol. 28, no. 3, July 1992, pp. 901-908.

The following reprint from 1991 was not included in the 1991 Annual
Appendix.

1. G. Pelosi, R. Tiberio and R.G. Rojas, "Electromagnetic Field Ex-
cited by a Line Source Placed at the Edge of an Impedance Wedge,"
IEEE Transactions on Antennas and Propagation, vol. 39, July 1991,
pp. 1043-1046.
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JSEP RELATED REFEREED JOURNAL PAPERS i
ACCEPTED FOR. PUBLICATTON

SEPTEMBER 1991 TO SEPTEMBER 1992 1
1. P.H. Pathak and R.J. Burkholder, "A Reciprocity Formulation for Cal-

culating the EM Scattering by an Obstacle within an Open-Ended
Waveguide Cavity," IEEE Transactions on Microwave Theory and
Techniques.

2. J. Li and R.T. Compton, Jr., "Maximum Likelihood Angle Estimation U
for Signals with Known Waveforms," IEEE Transactions on Signal Pro-
cessing.

3. R.G. Rojas and M. Otero, "Scattering by a Resistive Strip Attached
to an Impedance Wedge," Journal of Electromagnetic Waves and Ap-
plications.

4. J. Li and R.T. Compton, Jr., "Angle and Polarization Estimation in a
Coherent Signal Environment," IEEE Transactions on Aerospace and
Electronic Systems, July 1993.

5. J. Ward and R.T. Compton, Jr., "High Throughput Slotted ALOHA i
Packet Radio Networks with Adaptive Arrays," IEEE Transactions on
Communications. 3

6. M. Marin and P.H. Pathak, "An Asymptotic Closed-Form Representa-
tion for the Grounded Double Layer Surface Green's Function," IEEE
Transactions on Antennas and Propagation.

7. H.C. Ly and R.G. Rojas, "Analysis of Diffraction by Material Disconti-
nuities in Thin Material Coated Planar Surfaces based on Maliuzhnets'
Method," Radio Science.
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JSEP RELATED PAPERS
SUBMITTED FOR PUBLICATION

SEPTEMBER 1991 TO SEPTEMBER 1992

1. F.W. Vook and R.T. Compton, Jr., "Adaptive Array Beamforming in
a Packet Radio Network," IEEE Transactions on Communications.

2. P. Munk and P. Pathak, "Analysis of EM Scattering by an Array of
Waveguide Fed Slots in a Dielectric Filled Rectangular Cavity Opening
into a Ground of a Plane, Radio Science.

3. H.C. Ly, R.G. Rojas and P.H. Pathak, "EM Plane Wave Diffraction
by a Planar Juntion of Two Thin Material Half-Planes - Oblique
Incidence," IEEE Transactions on Antennas and Propagation.

4. R.G. Rojas and L.M. Chou, "Generalized Impedance/Resistive Bound-
ary Conditions for a Planar Chiral Slab," Radio Science.

5. J.L. Blanchard and E.H. Newman, "Integral Equation Analysis of Ar-
tificial Media," IEEE Transactions on Antennas and Propagation.

6. M.E. Peters and E.H. Newman, "Analysis of an Artificial Dielectric
Composed of Small Dielectric Spheres," IEEE Transactions on Anten-
nas and Propagation.

7. R. Torres and E.H. Newman, "Integral Equation Analysis of a Sheet
Impedance Coated Window Slot Antenna," IEEE Transactions on An-
tennas and Propagation.

8. U. Pekel and R. Lee, "An A Posteriori Error Reduction Scheme for the
Three Dimensional Finite Element Solution of Maxwell's Equations,"
IEEE Transactions on Microwave Theory and Techniques.

9. N. Wang and L. Peters, Jr., "Scattering by Thin Wire Loaded with a
Ferrite Ring," IEEE Transactions on Antennas and Propagation.

10. K.C. Hill and P.H. Pathak, "On the Nature and Evaluation of the
Transition Function for a UTD Corner Diffraction Coefficient," ACES
JournaL

11. Y.S. Choi-Grogan, R. Lee and R.-C. Chou, "An Analysis of the Ef-
fects of Boundary Conditions on Discretization Error in the Helmholtz
Equation," submitted to IEEE Transactions on Antennas and Propa-
gation.
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JSEP RELATED PAPERS I
IN PREPARATION FOR PUBLICATION
SEPTEMBER 1991 TO SEPTEMBER 1992

1. P.H. Pathak, A. Nagamune and R.G. Kouyoumjian, "An Analysis of
Compact Range Measurements."

2. P.H. Pathak, P. Law and R.J. Burkholder, "High Frequency Electro-
magnetic Scattering by a Large Obstacle/Termination within an Open
Cavity Structure."

3. M. Hsu, P.H. Pathak and C.W. Chuang, "Analysis of the Asymptotic 3
HF EM Coupling Between Sources Anywhere in the Vicinity of a Cir-
cular Cylinder."

4. K.C. Hill and P.H. Pathak, "A Uniform Stationary Phase Evaluation i
of a Double Integral with Algebraic Singularities."

5. K.C. Hill and P.H. Pathak, "An Approximate UTD Corner Diffraction I
Coefficient."

6. H.T. Anastassiu and P.H. Pathak, "High Frequency Analysis of Gaus- I
sian Beam Scattering by a Two-Dimensional Parabolic Contour of Fi-
nite Width." 3

7. L.M. Chou and R.G. Rojas, "A WH/GSMT Based Full-Wave Analysis
of Multilayered Printed Transmission Lines." to be submitted to IEEE
Transactions on Microwave Theory and Techniques.

8. L.M. Chou, R.G. Rojas and P.H. Pathak, "Dispersion and Lateral
Leakage of Conductor Backed Coplanar Waveguide with Layered Sub- i
strate and Finite-Extent Ground Planes," to be submitted to IEEE
Transactions on Microwave Theory and Techniques. 3

9. R. Lee and V. Chupongstimun, "A Partitioning Scheme for Electro-
magnetic Scattering from Electrically Large Cylinders." i

10. J. 0. Jevtic and R. Lee, "Dispersion Analysis of the Wave Equation
for Two and Three Dimensional Edge Elements."

11. U. Pekel and R. Lee, "A Three-Dimensional Finite Element Method for
Electromagnetic Scattering from Objects in an Unbounded Region."
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Computer Physics Communications 68 (1991) 1-18 Computer Physics
North-Holland Comm rications

I
An introduction to the method of moments*

E.H. Newman and K. Kingsley
Th- Ohio State Unitersity, Department of Electrical Engineerin& ElectroScence LAboratory, 1320 Kinnear Md.. Columbus,3 OH 432)2, USA

Received 31 August 1990; in revised form 20 December 1990

U This paper will present an introduction to the theory and application of the method of moments (MM) to problems of
electromagnetic radiation and scattering. The MM procedure for solving a linear operator equation, by transforming it into
a matrix equation, is reviewed. The integral equation and MM solution for an arbitrary perfectly conducting body is
presented, and then illustrated by the simple example of scattering by a 2D perfectly conducting strip. Numerical results are
used to illustrate the accuracy, convergence, and typical computer CPU times. The MM solution for radiation or scattering

by a rectangular dielectric cylinder is also presented. Finally, the internal resonance problem is discussed.I
1. Introduction basically a two-step procedure: The first step is to

obtain the integral equation. Basically, the sur-
This paper will present an introduction to a face or volume equivalence theorems are used to

numerical technique known as the moment replace the body by free space and by equivalent
method or method of moments (MM), especially currents [4]. The use of these equivalence theo-
as it applies to problems in electromagnetic radi- rems is crucial in that it allows the integral equa-
ation and scattering [1,2]. The MM is a numerical tion and MM solution to be formulated entirely
technique for solving a linear operator equation in terms of the free space fields of currents. The
by transforming it into a system of simultaneous integral equation for the equivalent currents is
linear algebraic equations, i.e. a matrix equation. obtained either as a statement of the boundary
Over the last 30 years the MM has been exten- conditions of the problem, or as a statement of
sively applied to virtually every area of electro- the equivalence theorems used. The second stei:
magnetics including radiation and/or scattering is to solve the integral equation by the MM. Iz
by perfectly conducting and material bodies, thin brief, the unknown current is expanded in term!
wire antennas, aperture penetration, printed cir- of an appropriate set of basis functions. If N
cuit structures, etc [3]. This paper will describe terms are retained in the expansion for the cur-
some of the basic features of the MM, rather rent, then N weighted averages of the integral
than present an extensive bibliography of MM equation are enforced. This MM procedure
research and applications, transforms the integral equation into an order N

In electromagnetics a "moment method solu- matrix equation for the N coefficients in the
tion" usually refers to a problem in which the expansion for the current. Once the current is
MM is used to solve a linear integral equation for known, most parameters of engineering interest
a current distribution representing a body. This is such as input impedance or radiated fields, can

be found in a straightforward manner, since they
This work was sponsored by the Joint Services Electronics involve only the free space fields of the currents
Program under Contract N00014-78-C-0049 with the Tbe The main advantage of MM solutions is high
Ohio State University Research Foundation. accuracy. The MM is a direct numerical solution

3 0010.4055/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved
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of the (usually) exact integral equation. All phe- of convergence. Section 3 describes the MM solu- 3
nomena of the problem are inherent in the inte- tion for an arbitrary perfectly conducting body,
gral equation, and are thus automatically in- and then illustrates the method by the simple
cluded in the MM solution. For example, MM example of scattering by a perfectly conducting
solutions in electromagnetics automatically in- cylinder. Numerical data will illustrate the accu-
clude surface waves, creeping waves, multiple racy, convergence, and CPU times for the MM
diffractions, shadowing effects, etc. A second ad- solution. Section 4 presents the MM solution for
vantage of the MM is that it is capable of dealing radiation or scattering by a dielectric body. Fi- I
with very complex geometries. In fact, several nally, section 5 will briefly describe the internal
user-oriented computer codes have been written resonance problem.
which can treat geometries as simple as a dipole In this paper all electromagnetic fields and
or as complex as an airplane [5-101. currents are considered to be time harmonic,

The main limitation of the MM is a result of with the e+•' time dependence suppressed. Also,
the fact that N, the number of terms which must all CPU times are for a VAX 8550 computer
be retained in the expansion for the current in which is about six times faster than a VAX I
order to obtain reasonable accuracy, is propor- 11/780.
tional to the electrical size of the body. The CPU
time to set up and store the MM matrix equation I
is proportional to N2. The CPU time to solve the
MM matrix equation is proportional to N 3 [Ill. 2. The method of moments
Thus, as the frequency is increased, the required
computer power also increases, and at some pointit becomes so large that the MM solution is 2.1. The MM procedure

impractical. However, it should be emphasized
that this is a machine or hardware limitation, and This section will describe the mathematical I
that as computers become more powerful, it will procedure known as the method of moments
be practical to apply the MM to larger problems. (MM), that is the procedure for solving a linear

Consider the example where the unknown is operator equation by transforming it into a sys-
the current on the surface of a 3D body. Account- tem of simultaneous linear algebraic equations,
ing for both polarizations of the vector current, commonly referred to as a matrix equation. The
typically N will be on the order of 100 unknowns description given here for the MM largely follows
per square wavelength of surface area. Thus, that originally presented by Harrington [1,2]. I
treating a body of 10A2 would require dealing An inhomogeneous linear operator equation
with an order N - 1000 matrix equation. Setting can be written as
up and solving the MM matrix equation typically I
will require about an hour of CPU time. Storage L(f) -g, (1)
of the MM matrix equation will involve more
than N 2 _ I million complex numbers. Note that where L is a known linear operator, g is a known
doubling the frequency will increase the surface source or excitation function, and f is the un-
area in A2 and thus N by a factor of 4. This will known response function. In electromagnetics f
increase the required storage by a factor of 16, is typically an equivalent current which produces
the CPU time to set up the MM matrix equation the radiation or scattering from the body, L(f) is I
by a factor of 16, and the CPU time to solve the typically the electromagnetic field of the current
matrix equation by a factor of 64. Thus, the MM f, and g is a known incident field. The linear
is often referred to as a low frequency technique, operator equation is typically an expression of
applicable when the body is not electrically large. either the boundary conditions of the problem or

Section 2 of this paper describes the MM of the equivalence theorems [4] used to define
procedure, and discusses the important question the current f. 3

U
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Eli. Newman, K Kingsley / An introduction to the method of moments 3

The first step in the MM solution of eq. (1) is results in
to expand the unknown function f as N

N .aa.(Lf.,w,)>-<g,w,.), m-I,2,...,N.
f..f'. aJf., (2) (5)

n,.-'

where fN is an N term expansion or approxima- Equation (5) can be written as

tion of f, the f, are a series of N known linearly (L N -g, w.)-O, m-l,2,...,N. (6)
independent expansion or basis functions in the
domain of L, and the an are a series of N Thus, the MM determines the a, so that the
unknown constants to be determined by the MM. difference between Lf N and g is orthogonal to
Substituting the fN expansion of eq. (2) into the the N weighting functions.
original operator (1), and using the linearity of L Equation (5) can be recognized as N simulta-
yields neous linear algebraic equations in the N un-

knowns a,, n - 1, 2,..., N. It can be more com-
N pactly written in matrix form as

Lf N- n aL(f,) -g. (3) L]A -G, (7)
n-Il

where (Ll is an N x N coefficient matrix, G is
For finite N, f in eq. (2) will generally not be the length N right-hand-side vector, and A is the

a complete expansion for f, and thus in practice length N solution vector which contains the a,
it is not possible to choose the a, to exactly from eq. (2). Typical elements of [L] and G are
satisfy eqs. (2) or (3). Instead, the a. are chosen given by
so that N weighted averages of eq. (3) are satis-
fied. Define a series of N linearly independent Lm,- (Lf,, w,>, m, n- I, 2,...,N, (8)
weighting or testing functions in the range of L, Gm - <g, w.), m - 1, N. (9)
denoted w., m - 1, 2,..., N. If the weighting
functions are chosen identical to the expansion Using standard matrix algebra, eq. (7) can now be
functions, i.e. w,. &,, then the MM solution is solved for the solution vector A, which when
referred to as Galerkin's method. The bracket substituted into eq. (2) provides an approximation
notation (u, w,,,> will be used to denote the inner to f. In electromagnetics, Galerkin's method re-
product between the functions u and w.,. Typi- suits in a symmetric [L] matrix. Note that the
cally, the inner product is taken as matrix [L] is independent of the excitation func-

tion g. Thus, an advantage of MM solutions is
( )f, ( that a relatively small effort is required to obtain

<u, w,) - juws dr, (4) the solution for a second or subsequent excita-
tion, since on the first solution one must set up

where the integral is over the region (line, sur- and LU decompose [L].
face, or volume) of w,. and the * implies complex
conjugate. In Harrington's original description of 22. Convergence of the MM
the MM the weighting function was not conju-
gated. Although the choice is arbitrary, here we One of the most important questions concern-
include the complex conjugate so that we can ing the MM is that of convergence. That is, as
directly use the results of recent work concerning N -+ w, does fN I.-+f? Very little can be said
the convergence of Galerkin's method. concerning the convergence of the general MM

Taking the inner product of both sides of eq. in which weighting functions can be chosen dif-
(3) with each wm, and using the linearity of L ferently from the expansion functions, and thus
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the remarks in this section will refer to Galerkin's develop the code and also the CPU time to 3
method in which w,, -f.. evaluate the inner products.

The convergence of Galerkin's method is de-
pendent upon the properties of the operator L 2.3. The method of least squares
[12,13]. If L is positive, i.e. if (Lf, f> > 0 for all I
f # 0, then it can be shown that fN converges in This section will show that the original opera-
energy to f [13], i.e. tor equation can be modified so that the linear

operator is positive, and thus convergence in en-
iim /(L(f N-), (fNy.f) 0. (10) ergy is guaranteed. The method employs the ad-

N-.-m joint operator, LV, defined by

Note that convergence in energy does not imply L v> - <u, LIV). (11)
that fN converges to f.

In electromagnetics the L operators are not Operation by L" on both sides of eq. (1) yields
positive, and thus nothing can be said concerning the new operator equation I
the convergence of Galerkin's method or the
MM. However, experience has shown that with a L8L(f) L'(g). (12)
"reasonable" choice of expansion and weighting LVL is a positive operator since
functions the MM does converge, and in fact is
often used as a reference solution and referred to (LVLu, u) = (Lu, Lu) = II Lu 11 2 > 0,
as an exact method. Unfortunately, the choice of if u * 0, (13)
"reasonable" expansion and weighting functions I
remains somewhat of an art. Basically, one wishes and thus the Galerkin Method solution of eq.
to choose expansion functions which: (12) will converge in energy. The elements in the

1. incorporate as many of the known proper- matrix equation (7) are given byI

ties of the unknown function f as is possible. For Lm,,n - (Lf., Lf,), m, n - 1, 2,..., N, (14)
example if f is continuous, then it is desirable to Gm - (g, Lf,), m - 1, 2,..., N. (15)
choose expansion functions which are continuous. I
If f is zero at the boundaries, then it is desirable Equations (14) and (15) can be recognized as the
to choose expansion functions which are zero at method of least squares which can be derived by
the boundaries. If f is not zero at the bound- direct minimization of II Lf N - g II [14]. Compari-
aries, then using expansion functions which are son with eqs. (8) and (9) shows that the method of
zero at the boundaries would be considered an least squares is equivalent to a MM solution of
"unreasonable" choice, and the MM would not the original operator (1), but with weighting func-
be expected to converge. tions chosen as wi, - Lf,. The main disadvantage I

2. permit the inner products in eqs. (8) and (9) of the method of least squares is that the matrix
to be evaluated with reasonable ease. elements are typically more difficult and time

consuming to evaluate.
In practice the choice of basis functions is a Figure 1 shows a comparison of the mean
compromise between the above two criteria, square error, II 1 2, versus N in the solution of
Choosing very simple basis functions often re- a simple differential equation by Galerkin's U
duces the difficulty in developing the MM code, method and by the method of least squares [15]. 5
however, the code may be slowly converging and Note that the error in the least squares solution
require a relatively large N to achieve accurate monotonically decreases with increasing N, while
results. On the other hand, one can choose very that for Galerkin's method does not. Also, the I
sophisticated basis functions which yield accurate error for the least squares solution is always
results with a relatively small N. However, this lower than that for Galerkin's method, however,
can increase both the man hours required to the difference is small. In electromagnetics the 3

I
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; ' ' ' the surface S. Here (AO, eo) are the constitutive
dz 2 1 OSlx1l/2 parameters of free space, and A is the unit out-
dxf(x) 0 O /2<lxlS .' f(-1) =f( 1) V ward normal to the closed surface S. When radi-

S5 • n - 2n) n t.2...N ating in free space, (lI, M I) produce the known
incident fields denoted (El, H'). If the impressed
sources are very close to the conducting body,

S, a,,lrkina, Method then the geometry of fig. 2a is referred to as an
Mnlmwn Mean antenna or radiation problem. If the impressed

currents are far removed, then the incident fields
1 -/are plane waves, and fig. 2a is a scattering prob-

C ,lem.
As illustrated in fig. 2b, the first step in obtain-

ing the integral equation is to use Schelkunoff s
i - -surface equivalence principle [4,16,17] to replace

the perfectly conducting body by free space and
5 ,the equivalent electric surface current

N = No. Terms
Fig. 1. A comparison of the mean square error in a Galerkin J - A X H on S. (16)
method and a least square error solution of a differential The free space fields of the equivalent cutrent J

equation. are referred to as the scattered fields, and are
denoted (Es, HS). In the equivalent problem of

method of least squares is employed far less than fig. 2b, the total fields are the superposition of
the MM, probably because the advantage in the the free space fields of (Ji, Mi) and J, i.e.
increased rate of convergence does not justify the " "E".
increased computational effort. E - E'+ Es, X17)

H - '+n. H'(18)
3. Perfectly conducting bodies It is important to emphasize that in the equiva-

lent problem of fig. 2b, all currents radiate in free
This section will outline the integral equation space. As a result, the integral equation and MM

and MM solution to the problem of radiation or solution for J is formulated entirely in terms of
scattering by a perfectly conducting body. First, the free space fields of currents.
the solution for a general perfectly conducting The electric field integral equation (EFIE) is a
body will be presented, and then the method will statement of the boundary condition that the
be illustrated by the simple problem of plane total electric field tangential to S must vanish,
wave scattering by a perfectly conducting cylin- -Ax E s -ixE' onS. (19)
der.

3.1. The integral equation A y AQ ~S.. ..... ,

This section will obtain the electric and mag- U-0) (0.0) J
netic field integral equations for the current dis-
tribution on a perfectly conducting surface. The (Mo.(0) (O4.c.) '.. "
general problem is illustrated in fig. 2a where the
assumed known impressed currents (J', Mi) ra- (a) (b)
diate the unknown total fields (E, H) in a Fig. 2. (a) The impressed currents (P, M') radiate in the
medium which is free space except for the pres- presence of a perfectly conducting body. (b) The body is
ence of a perfectly conducting body enclosed by replaced by the equivalent electric surface current J.
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Equation (19) is referred to as an integral equa- 9 the unknown response f is the surface current
tion for A, since the scattered field can be written J flowing on S; I
as * the linear operator L is minus the tangential to

S component of the free space electric field of
Es " fJ. G ds, (20) an electric current. 3

s (0 The first step in the MM solution is to expand

where ? is the free space electric dyadic Green's the unknown current in terms of some basis func-

function [18]. tions. Thus we expand J as I
The magnetic field integral equation (MFIE) is N

a statement of the surface equivalence theorem J.J .- 1 JIJ,, (22)
(16). Inserting eq. (18) into (16) yields M-1 I

where the J, are a sequence of N known linearly-h X Hs +1- A x H' on S,(21) independent vector expansion functions, and the

where S+ is a surface an infinitesimal distance i. are a sequence of N unknown complex coeffi-

exterior to S. cients (n - 1, 2,..., N). Note that the J, must in

In the above derivations of the EFIE and the general account for both components of the vec-

MFIE, the use of Schelkunoff's surface equiva- tor current J on S. Denoting - L(J) - E, as the

lence principle requires that S be a closed sur- free space field of J,, eq. (19) becomes I
face. For a closed surface, such as a sphere or a N

closed box, J is the current flowing on the exte- -A X , I.E., A E' (on S). (23)
rior of S, and there is no current on the interior. n-1 I
However, for an open surface, such as a zero Now define w,. (m - 1, 2, .... , N) as a sequence
thickness plate or a box with one side removed, of N linearly independent weighting functions on
there will in general be different surface currents S, and with vector direction tangential to S. Tak-
flowing on either side. By considering a zero ing the vector inner product of both sides of eq.
thickness plate as the limiting case of a closed (23) with the w. and integrating over S yields
box as the thickness goes to zero, it can be shown N

that when the EFIE is applied to open surfaces, - E I f f En • w,. d - f f i.w.ds,
J will be the vector sum of the current on the two n- f E d
sides [19]. Since it is the vector sum current which -i, 2,..., N. (24)
radiates the scattered fields, the EFIE is applica-
ble to closed as well as open surfaces. By con- Equation (24) is a system of N simultaneous
trast, when the MFIE is applied to open surfaces linear equations, which can be more compactly
the resulting J is the vector difference between written in matrix form as
the top and bottom currents. The vector differ- [Z]I - V, (25)
ence current has no use except in the special case
where the current on one side is zero, i.e. for where, in analogy with Ohm's law, [Z] is the

dosed surfaces. Thus, the MFIE is only applica- order N impedance matrix, V is the length N I
ble to closed surfaces. voltage vector, and I is the length N current or

solution vector which contains the 1,, in eq. (22).

3.2 The MM solution Typical elements of [Z] and V are given by 3
This section will describe the MM solution of Z.. --JJE - w., ds, m, n - 1, 2,..., N,

the basic EFIE of eq. (19). Comparing eq. (19) to (26)
(1) it can be seen that:
* the excitation function g is the incident electric V. - ffEl. w, ds, m - 1, 2,..., N, (27)

field tangential to S; 3

I
I
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Swhere the integration is over that portion of S Following eq. (22), the current on the strip is
where w,, is non-zero. Note that the matrix equa- expanded as
tion (25) requires only the evaluation of the free N

space fields of known currents. If the weighting j 0 jN = E I.J, (30)
functions are considered as surface currents with n-1
units A/m, then the elements of [Z] and V have
units VA, and the 1,, are dimensionless. Equation where as described in section 3.1, J is the sum ofI (25) can now be solved for 1, which when substi- the surface current on the top and bottom sur-
tuted into eq. (22) provides an approximation to faces of the strip. In order to define the MM
J. Once J is known most parameters of interest, basis functions, the strip of width D is split into

such as radiated or scattered fields, can be easily N smaller strips or segments of width d - DIN,
computed since they are simply the free space and with center point x,. The expansion func-
fields of J. tions are chosen as the simple piecewise constant

or pulse functions

3.3. TM scattering by a perfectly conducting strip 1
I. - ýA/m on segment n,

This section will present the MM solution of
the EFIE, eq. (19), for the relatively simple 2D Zn- ½d <x <xZ +d
problem of TM scattering by a perfectly conduct- - 0, otherwise. (31)
ing strip. In particular, it is desired to obtain Note that the have been
simple expressions for the elements in the MM te have I hal ceen Formalized so thatmatrix equation that can be coded with a mini- they have 1 A total current. For the pulse expan-
mum of effort, and evaluated with a minimum of sion to be accurate, d must be chosen smallmCPU time. Figure 3 shows a TM (to z) polarized enough that the current is essentially constant inCPU time. iniguren 3usow a perectly z)ponductig each strip. Typically this requires strips of widthsrplane wave incident upon a perfectly conducting 0.05A < d < 0.25A, with the accuracy increasing as
strip of width D. The incident electric field is d/A decreases.

(8) In order to find Z,,,,. we will first find E.. The
free space electric field of a unit amplitude line

where #, is the angle of incidence and k - 2wr/A source is
is the free space wavenumber. For the TM polar- -. Ir 7

ization, the electric fields and currents are purely EL' H•2)(k•I•p - p't), (32)
.9 directed. Thus, the vector notation will be 2A
dropped and the . component is understood. For where the characteristic impedance of free space,
example, the vector EFIE, eq. (19), reduces to - i/eo/ - 377 fl, and I p - P' I is the distance
the scalar EFIE from the line source to the field point. Using

E'-Ei onS. (29) primed and unprimed coordinates to denote the
source and field point, respectively,

TM Scatterlng by a Perfectly 
Ip-pul _.

Conducting Strip I= -/ 2 + p,2 - 2pp' cos(O -,0'). (33)

Stri • Using eq. (32) and superposition, the free space
PulseBasisfield of J. is2d -'PC. Srl

E.(x -P4 Ljfl HXo2)(k Ipp-P1) dx',

Fig. 3. Geometry for the MM solution of a TM plane wave (34)
incident upon a perfectly conducting strip of width D.

I
I
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where the integral is over the width of segment n, ality, fig. 4 shows the expansion mode Ji centered
i.e.-x., - Id :x' <x + d. Employing Galerkin's, about the y axis. Evaluation of the self
method, with weighting functions w., -J,., the impedance, Znn, requires finding the electric field

elements in the MM matrix equation, eqs. (26) of J. directly on J.. The electric field of J,, at a

and (27), reduce to field point (-d/2 <x < d/2, y - 0) on Ji is

Zmn - f E.Jm dx En(x) _ -- 'J d1_,,Ho2 )(k I x - x'I) dx'm 2A f"-d/2

"I "n [fH(2)k -xIx- x'O ] -d [J (2)k(x-x'))dx'-2Ad 2 JmL[ ,Ix t)dx dx, -. A [_-_dL/2 do,
(35)

+fd/2H~o2)(k(x'-x)) dx'j. (37)
V-,n-fEjEMd dx- - . dx

2 sin(kd cos O,/2) eNote that the integrands in eq. (37) are singular
s , (36) when x -x', and thus they can not be evaluated

kd cos 0, by straightforward numerical integration. I
where x,. is the center point of segment m, and Since d -c A, one method for treating the sin-

m, n - 1, 2,..., N. Since this is a Galerkin method gularity is to replace the Hankel function by its

solution, the impedance matrix is symmetric, i.e. small argument approximation, and then perform U
the integrals analytically. Using the approxima-

As is typical for MM solutions, the computa- tion [20]
tion of the N elements of the voltage vector, V, is j2
straightforward and fast (small CPU time). By Ho(2)(u) (1 + jO.0 7 3 8 ) - -In u, I uc 1,
contrast, the computation of the N 2 elements of (38)
the impedance matrix is more complex, and can
require a great deal of CPU time. The evaluation in eq. (37) and integrating yields
of the Z.,. involves a double integral which must
either be done numerically or by some approxi- E.(x) -- 1rv[( 2 ) d 2L
mate method. In addition, for self impedance 2,Ad C+J; d--
(m- n) and adjacent mutual impedance (Irm-
n- 1-) terms, the integrand is singular and can X((x+ 'd) In k(x+ 'd)
not be evaluated by straightforward numerical ]
integration. Below, we will present simple expres- +(½d -x) In k(½d- (39)
sions for the Zmn which can be evaluated without
the need for numerical integration, where the complex constant C - I + jO.0738. Note

The self impedance terms are typically the that E.(x) in eq. (39) is well behaved and con-
most important and most difficult terms to evalu- tains no singularities. Finally, inserting (39) into
ate in the MM [Z] matrix. Without loss of gener- (35) and integrating yields 3

Z.. _fd/ 2 E.(x)J., dx

-R0 -- C+j kd (40)

-d/2 d/2 3d/2
Fig. 4. Geometry for the computation of the self and touching Figure 5 shows the self impedance, Zn,, - Rn, +

impedances. jX.., versus d/A computed by eq. (40) and by the

I
I
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I. the voltage vector. Using standard matrix algebra,TM Strip Self Impedance eq. (25) can then be solved for the current vector,
- Present Method 1, which when substituted into eq. (22) yields JN

n Method which is an approximation to the true current J

Jn= A/m on the strip. The next section will discuss the
- computation of the far zone scattered fields and

Id echo width of the strip.

3.3.1. Far zone fields

In scattering problems, normally the parame-
ter of interest is the far zone scattered fields or

. 'd/ echo width. The computation of the scattered

Fig. 5. A comparison of the self impedance, Z.. . + . fields is straightforward since by definition the
computed by eq. (40) and by the more exact method of Wang scattered fields are the free space fields of J.

121). Replacing J by its N term approximation JN,

N

more exact methods of Wang [211. Note that eq. E s . In ,E,, (43)
(40) is reasonably accurate, even for strips as R-1
wide as kd - ½6r. where the coefficients I, (n - 1, 2,..., N) are

Referring to fig. 4, adjacent modes have a evaluated by the MM solution described in sec-
common endpoint, and thus their mutual tion 3.3, and E. is the free space electric field of
impedance will also involve a singular integrand. the basis function, J,,.
Using the same small argument approximation This section will derive simple expressions for
for the Hankel function, the mutual impedance the scattered fields in the far zone, i.e. in the
between adjacent modes is limit as kp -. w. In general, E,, is given by eq.

3d/2 (34). In the far zone, the Hankel function can be
Z.. --fd/'E(x)J.+, dx replaced by its large argument approximation [20]• d/2

2 [C+j VHO 7uu) -" e- > (44)

j2 1 In the far zone p ý, pD, and eq. (33) for the
-(2 In 2kd- Inkd)J" (41) distance between source point x' on the strip and

the field point (p, 4.) reduces to
If modes m and n do not touch (I m - n I > 1)

then Z.n can be evaluated using eq. (35) and Ip - p' I /p 2 - 2pp' cos(O -. 0')
numerical integration. However, if modes m and
n are not too close, then Z,,,, can be approxi- --p-x' cos 4.. (45)
mated by Using eq. (45) to approximate the exponential
Z.-!-T'H Jm2)k( x.-xnl), Ix,-x.•d. phase term in eq. (44), and /Ip -p'l -1/p for

2A H ( the amplitude, the far zone approximation for the

(42) Hankel function becomes

A simple MM matrix equation (25) can be set Hv2 )( kp -P'i) " Ie)i (

up using eqs. (40), (41) and (42) for the computa- er " rkPk,
tion of self, touching mutual, and non-touching
mutual impedances, respectively, and eq. (36) for I kp I : 1 and p ,a- p'. (46)
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Inserting eq. (46) into (34) and integrating yieldsEn(P •)••" ••-Exact Eigenfuncoo 1

W71 4,) eF2 ./4 e-j 'e s dx'

- d -ý e1k e `0dx

71/' e-* X v

" -V (i). (47)J(x)

Note that in the far zone En is proportional to V,,
of eq. (27), and in fact eq. (47) could have been ,_

derived from reciprocity rather than by direct i, M,

integration. Since the p dependence of E. (p, 0)
in the far zone is simply

e-jkp 0•

e Exact Eigonfunction

En(p, 41) is usually written as %.'
e - k ' .) ?, M M

En(P, 0) -= "7r-EnF(06), (48) ,
vP

where E.F(46) is the far zone electric field of J,. CL r

Comparing eqs. (47) and (48) gives N = No. of M M k ods ; A 1

eJw/41,1 Fig. 6. A convergence curve for the current in the center of
E.F(6) - yP/eJkPE.(p, 4,) - 2- " Vn(6)" the strip.

(49) W has dimensions of meters, and is often ex-

The total far zone scattered electric field is pressed in terms of dB m which is obtainedv by

N Cj"'4 ,7 N taking 10 logl0 W.

n- 1 3.3.2. Numerical results

(50) This section will present numerical results
based upon the above MM solution for TM scat-

For 2D problems, the power density of the far tering by a perfectly conducting strip. This data
zone scattered field is usually expressed in terms will include strip current distribution, echo width, 1
of the echo width. The echo width, W, is defined and CPU times, and will be designed to illustrate
as a width, when multiplied by the power density the accuracy and convergence of the MM solu-
of the incident wave, that would yield sufficient tion. As illustrated in the insert in fig. 6, all data
power that could produce by isotropic radiation in this section will be for a I A wide strip illumi- I
the same radiation intensity as that in a given nated by a TM wave incident from the angle
direction from the scattering object. For the unit #, - 45 0 with respect to the x axis.
amplitude incident plane wave being considered The MM solution basically determines JN(x), I
here, the echo width is related to the far zone an N term approximation to the current induced
field by on the strip by the incident field. Figure 6 shows

the magnitude and phase of the current in the
W(.0) -- 2rIEs(O)I2. (51) center of the strip, JN(x--0), versus N-the

I
I
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I C • * I~ i I*f=300 Mhz I - -

I t 450

QStrip X) St, 450C
x.. Strip

X Exact Eigenfunction ,

MM
N=20OMM- N=2 0

0 Exact

Fig. 7. A comparison of the N - 20 MM and eienfunct ion ___"

solution for the current on the strip.

3 number of pulse basis functions used in eq. (30) • (Dog)
expand the strip current. The dashed line Fig. 9. A comparison of the N- 20 MM and eilenfunction

shows the exact eigenfunction solution for the solution for the bistatic scattering from the strip.

strip current [22,23]. For small N, the MM solu-
tion is erratic, however, as N increases it con-
verges almost exactly to the cigenfunction solu- In most cases one is more interested in the
tion. For N - 20, which corresponds to a segment echo width than the strip current. Figure 8 shows
size of 0.05A, fig. 7 shows a comparison of the the bistatic echo width at 46 - 135 * versus N.
magnitude of strip current computed by the MM Note that it converges uniformly to the eigen-
and the eigenfunction solution. The agreement is function solution shown as the dashed line. Fig-
very good near the center of the strip, however, it ure 9 shows a comparison of the eigenfunction
does worsen near the edges where the true cur- and N - 20 mode MM solution for the bistatic
rent has a 1/ ý" singularity (s - distance to the scattering pattern of the strip. The agreement is
strip edge). less than a few tenths of dB for all angles.

MM CPU Vs. N

Exact Eigenfunction
0

E MM

3: I f=300 Mhz First Eir

o
.y; 0 0

I T1: ti .

N = No. of MM Modes Log N

VW .8.Awtwrgence curveforthe bstaticechowidthofthe Fig. 10.TIeCPUtimeonaVAXBS0for variouspatsofthe
strip. MM solution.
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The final set of data will illustrate the CPU ( •

time for the strip MM solution. As a function of v• I
N, fig. 10 shows the CPU time to: -- (._) (._) -

1. compute the N x N impedance matrix, [Z]; (.,o~$) (.o.c.) (Ao.o).
2. make the first computation of the scattered 0I

field, Es, which involves (1) computing the (a) (b)

voltage vector, V, using eq. (36), (2) LU de- Fig. 11. (a) The sources (j', M') radiate the fields (E, H) in
composing the [Z] matrix, (3) back substituting the presence of a material body; (b) the material body is
to find the solution vector 1, and (4) finding replaced by free space and the equivalent current (J, M). I
the far zone scattered fields using eq. (50);

3. make a second or subsequent computation of
Es which requires the above 4 steps except scattering by a dielectric and/or ferrite material I
step (2), the LU decomposition of [Z]. body. The method will be illustrated by the rela-

For large N, the CPU time is dominated by tively simple problem of TM s,.attering by a rect-
the first computation of the scattered field. Of angular dielectric cylinder.
the four steps listed in item 2 above, the LU
decomposition of the [Z] matrix requires by far 4.1. The volume integral equation
the largest CPU time. For large N the "first Es"
curve is nearly a straight line with slope - 3.0, This section will obtain the volume integral I
indicating that the LU decomposition is an N 3  equation for scattering by a material body. The
process. The next largest CPU time is that to general problem is illustrated in fig. Ila where
compute the impedance matrix [Z]. Since there the assumed known impressed currents (J, M') I
are N 2 elements in JZ] this is an N 2 process. radiate the known incident fields (Ei, H') in free
For large N, the slope of this curve is about 1.94. space, a"-' ii. unknown total fields (E, H) in a
It should be noted that the expressions used here mediu., which is free space except for the pres-
to evaluate the [Z] matrix are extremely simple ence of a possibly lossy and inhomogeneous di-
and fast to evaluate. In a more typical situation electric/ferrite material body with constitutive
the computation of the elements of [Z] *equire parameters (ii, e) in the volume V.
one or more integrals which must be evaluated As illus:,ated in fig. lib, the volume equiva- I
numerically. In this case, the CPU time would be lence theorem is used to replace the material
dominated by the computation of the [ZJ matrix body by free space and by the equivalent electric
for small N, and the LU decomposition for large and magnetic volume polarization currents [4]
N. The smallest CPU time is that fora seond or (52)
subsequent computation of the scattered field,
since the [Z] matrix has already been LU decom- M jw(M - jL0)H in V. (53)
posed. However, the total CPU time to compute Note that J and M exist only in the volume V I
a pattern can be significant, since Es must be where e * eo and ;Lt #oj, respectively. In the
evaluated at many angles. For example, computa- equivalent problem of fig. 1lb the total fields at
tion of a backscatter pattern at I * steps for any point in space (interior or exterior to V) areN-300, will require 3 s to compute the [Z] the superposition of the free space fields of the
matrix, 33 s for the first computation of Es, and ipressed currents and the equivalent currents,
360 x 0.63 s - 227 s for the remaining 360 angles. i.e. I

E - El + EJ + Em¢, (54)
4. Material bodies H -HI+ HJ + Hm, (55) 3

This section will outline the volume integral where (EW, HJ) and (EM, Hm) are the free space
equation and MM solution to the problem of fields of J and M, respectively. 3

l
I
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The volume integral equation is obtained by TM Radiation or Scattering
enforcing the volume equivalence theorems in V. by a Dielectric Cylinder E'
Solving eqs. (52) and (53) for E and H, and Yt''I
substituting the results into eqs. (54) and (55) xy
yieldsAI -"+ o(/.o ,n,. '1 I w N

EJw+ 0 ~Em-Ei inV, (56) h'I~ ~Ihi n

H+ j( ) -Hm=H inV. (57) 1 2 3

Equations (56) and (57) are a pair of coupled Fig. 13. A rectangular dielectric cylinder is segmented into N

vector integral equations for (J, M). For non- rectangular cells corresponding to the MM expansion modes.

magnetic material (;L =-to and thus M = 0), eq.
(56) is equivalent to the three scalar equations

J. = weighting functions in each cell will reduce eq.
-E E, - jW(E- e0 ) E, (58) (58) to an order 3M matrix equation.

-Ej- - EJ, - EJ- + E= E' 4.2 TM dielectric cylinder"Y -" ' j(e-eo) -

- E- - E,- + . E This section will outline the MM solution for
j W(f -E0) " TM radiation or scattering by a rectangular di-

electric cylinder. Figure 13 shows a rectangular
for (JU, Jy, Jj) in V. Figure 12 shows a rectangu- cylinder of height H, width W, and permittivity e.
lar dielectric volume which has been segmented A lossy dielectric is described by its complex
into a number of smaller rectangular cells for the permittivity
purpose of defining the MM expansion functions.
Each cell contains three MM basis functions, e e•e(i -j tan 8) weTEo -j- (59)
corresponding to i, j, and f components of J.
Thus, M cells will result in N - 3M unknowns. where er is the relative permittivity, tan 8 is the
Employing the MM with three orthogonal vector loss tangent, and a, is the conductivity. For inho-

mogeneous dielectrics e will be a function of
position. Tne dielectric is shown excited by either
a TM polarized plane wave with incident electric
field given by eq. (28), or by a unit amplitude

Cd -' (I--I A) line source located at (x0 , yo) and with
incident electric field

2Af 0-•--HOO(kp,), (60)

i-- where the local p, is the distance from the line
source to the field point.

Fig . PUoN a r, For a TM to z polarized incident electric field.- Not.w ,,,•,v•, all electric fields and electric currents "Il be f
Fig. 12. A rectangular dielectric body is segmented into smaller
rectangular cells corresponding to the MM expansion tune- directed. Thus, we can now drop the vector nota-

tions. tion, and the I component is understood. The
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general vector integral eq. (56) reduces to the The weighting functions will be Dirac delta
scalar equation functions located at the center of the N cells, I

jE' inR, (61) w-(x-xm) (y -y.), m -12,..., N,

jw(e - eo) (66)

for the f component of J. Since this is a 2D where (xU, y.) is the center of cell m. Multiply-

problem, eq. (61) applies in the cross-sectional ing both sides of eq. (65) by the w,m (m =

region R of the cylinder. 1, 2, ... , N) and integrating over R will reduce

The first step in the MM solution of eq. (61) is eq. (65) into an N x N system of simultaneous

to expand the unknown volume polarization cur- linear equations which can be compactly written

rent as in matrix form as

N [Z + AZ] - V. (67)

j . jN = 1,)J,,, (62) Using the sampling property of the Delta func-
n-1 tion, the elements of the MM matrix equation are

where the J. are a sequence of N known linearly simply
independent expansion functions, and the 1,, are Z,. - -E,.(x., yin), (68)
a sequence of N unknown complex coefficients 1 I
(n - 1, 2,..., N). To define the expansion func- AZm. = m -n,
tions, the rectangular cylinder is segmented into jAw(e. - eo ) U
N smaller rectangular cells. If we denote R, as -0, m # n, (69)
the cross-section region of cell n, then the piece-
wise constant or pulse expansion functions are V.- Ei(x., y.) for general excitation, (70)
defined by = I

1 for plane wave excitation, (71)
J.- A inR., - ( X )2+(YOy)20 otherwse, (63) 2AH

for line source excitation, (72)

where A is the cross-section area of the cells. As fNwa h aefor the strip modes defined in eq. for m, n - 1, 2, .. .. N. Note that the only placeI
was the caseletrip modes are norm .- that the permittivity enters the MM solution is in
(31), the dielectric expansion modes are normal- thevlainotedagal[Zmtrx h-ized to have unit total current, the evaluation of the diagonal [AZ] matrix. Inho-

The free sae electric field of c,, at the field mogeneous dielectrics are treated by simply using
point (x, ypis e., the value of e at the center of cell n, in I

evaluating the AZ.. Also note that the differ-

-WTI j. ence between plane wave and Fne source excita-
E.(x, y) - fH(2)(kp) ds', (64) tion is a simple change in the voltage vector, V.Choosing the weighting functions as Dirac

where p - V( x -_x')
2 + (Y -Y')

2 is the distance delta functions is equivalent to enforcing the inte-

from the source point to the field point and the gral equation at N points at the center of the N

double integral is over R,, the region of cell n. cells, and is therefore referred to as a point

Using this notation, eq. (61) becomes matching MM solution. The advantage of the
point matching solution is that it simplifies the

N N jr j evaluation of the MM matrix equation. For exam-
-, In E. + F, - E' in R. (65) pie, evaluating the Z.,. for point matching re-
N-I ,,-i j -o(-) quires a double integral to find En(x., y.). By

I
I
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contrast, in a Galerkin MM solution (w,, -Jm) a 4.3. Numerical results
quadruple integration would be required to find
the Z,,n. The disadvantage of the point matching This section will present numerical results
solution is that, as compared to Galerkin's based upon the point matching MM solution for
method, it tends to be more slowly converging, scattering by a rectangular dielectric cylinder

The double integral required to find E,. or given in section 4.2. For simplicity, self impedance
Z,,,, must be done either numerically or by some terms are evaluated using eq. (76) and all other
approximate technique. For off diagonal terms mutual impedances using eq. (73).
(m * n), numerical integration is reasonably fast Figure 14 illustrates the convergence of the
and accurate. In fact, when the separation be- backscatter echo width, W, at f- 300 Mhz for a
tween the cells is much larger than the cell size, 1 X 0.5 m dielectric cylinder with relative permit-

J., can be replaced by a unit amplitude line source tivity e, - 4 and loss tangent tan 8 - 0.1. Curves
at the center of cell n, and the off diagonal terms are shown for the dielectric cylinder segmented
can be approximated by into N-6x3-18, 10x5-50, 20x 10-200,

and 30 x 15 - 450 cells. The CPU times for these
Zm.. H1H(2)(kp.n), (73) runs were approximately 1.63, 5.27, 55.79, and

2A 0 m) 319.15 s, respectively, on a VAX 8550. The MM
._ x.)1 + ( Y,. _ is2 the solution is well converged for the 20 x 10 seg-

where p,.,, - (,,, Y,) the mentation, which corresponds to a segment size
distance between the centers of cells m and n. of 0.05A or 0.1 wavelength in the dielectric.
However, for the self impedance terms (m = n) One of the useful features of the volume cur-
the integrand is singular and straightforward nu- rent formulation is that it is trivial to treat inho-
merical integration fails. Providing that the cells mogeneous dielectrics and to compute the total
are nearly square, Richmond presented a very electric field in the dielectric. Inhomogeneous
simple method for evaluating the self impedance dielectrics are treated by simply using e. - the
integrations [24]. Basically, Richmond used the value of E at the center of cell n in evaluating the
approximation that the self impedance of a nearly
square cell is the same as that of a circular cell of
the same cross section area. For a circular cell of
radius a - iVr/''r the point matching self T_impdace s M Dielectric Cyflnder Convergenceimpedance is

......... 20x 0

Z.. -En(P -0) f - JJ.Ho2)(kp) ds'

2 AAJOJOH (kp)p dpdo. (74)2A 0,0 f--3o0 Mhz
.C

In eq. (74), the do integration simply results in a Yf
factor of 27r, and the dp integration can be
integrated using the identity [25]

fpHS')(kp) dp•- )(kp). (75) T. I IM-

In this case, eq. (74) becomes 4 4 4 io i' 16

(2) r a 21 (P(Deg)
Z.. 2 aH 2 (ka)-i-I. (76) Fig. 14. Convergence of the MM solution for TM scattering by

2a2 ik a rectangular dielectric cylinder.
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&Z,, terms in eq. (69). Using eqs. (52) and (62), " .

the total electric field in the center of cell n is CAN)"IN-80 V

simply m N '7fGhz I
E(x,., y.) - j((77)-eo)A' (.

9It
where I, is the coefficient of J, and A is the i/( ix)=16

cross-section area of the cells. -- - " ,' \, ,
The insert in fig. 15 shows an f= 1 Ghz TM .

plane wave with edge on incidence (4i - 0) toa a ' *

thin dielectric slab of width 0.6 m and thickness X
0.0075 m. For the MM solution, the slab is seg-
mented into a single row of N - 80 cells. The
magnitude of the total internal fields along the 15
slab centerline is shown for a homogeneous di- E'( X)1 +0(0.3 -- x)

electric slab with e. = 16, and for an inhomoge- 2, .. 4' o i...........1.. I
neous slab with (P (Dog)

15 Fig. 16. The bistatic echo width for a homogeneous (dashed
e, - I + - (0.3 - Ix 1), (78) line) and inhomogeneous (solid line) dielectric slab. I
in which er tapers linearly from 16 in the center
of the slab to I at the edges. When the incident
waves hits the edge of the* homogeneous e, - 16 shown for the internal fields. By contrast, since
slab, a surface wave is produced by the abrupt the edges of the inhomogeneous slab have er, 1,
change in permittivity seen by the incident field, very little surface wave is produced, and the
The surface wave propagates toward the other internal fields display almost no oscillatory behav- I
edge of the slab and is then largely reflected. The ior. The bistatic echo widths for the homoge-
result is the oscillatory or standing wave pattern neous and inhomogeneous slabs are shown in fig.

16. U
"S. The internal resonance problem

, ;Every technique, no matter how powerful and
"general, has its limitations and problems. This
section will describe the internal resonance prob-

mlem which occurs in MM solutions for currents on
CEr( x)=1 + -closed surfaces.

In solving eq. (1) for f it is implicit that we
desire the particular or forced response, i.e. the

2' Er(x)-.Y? N=0 response due to the excitation g. However, if
.075M -- there is a solution to the homogeneous equation

0--.6m f=1 Ghz L(f)-O, then the total response is f-fp+cfo +
-• -&• ....... o. where fp is the desired particular solution, f0 is

x (M) the homogeneous solution, and c is an arbitrary

Fig. 15. The total internal fields in a homogeneous (dashed constant. If the operator equation has a homoge- i
line) and inhomogeneous (solid line) dielectric slab. neous solution, then ideally, the MM matrix eq.

3
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(7) will also have a homogeneous solution. The 6. Summary
rank of the matrix [L] will be less than N, and
[LI will be a singular matrix with a zero determi- This paper has presented an introduction to
nant and no inverse. However, since the matrix the MM and its application to problems of elec-
[LI is a finite-dimensional approximation to the tromagnetic radiation and scattering. The MM is
operator L, in practice, [LI will be nearly singular a numerical technique which is used to solve the
with a small but non-zero determinant and a very linear integral equations which arise in electro-
large condition number. In this case, the numeri- magnetics by transforming them into a system of
cal solution of eq. (7) will be extremely sensitive simultaneous linear algebraic equations, i.e. a
to roundoff error, and obtaining an accurate solu- matrix equation. The method is illustrated by
tion will be difficult if not impossible. Thus, if the considering both perfectly conducting and dielec-
original operator equation has a homogeneous tric bodies. In particular simple MM solutions
solution, the MM solution is expected to fail. were presented for TM scattering by a perfectly

In electromagnetics, homogeneous solutions conducting strip and a rectangular dielectric
arise in the analysis of closed surfaces. For exam- cylinder. Although there is no mathematical guar-
pie, consider the problem of scattering by a closed antee of convergence, as is typical, the solutions
perfectly conducting box. The current on the box presented did convergence.
is the solution of the EFIE, eq. (19), which basi-
cally enforces the boundary condition that the
total electric field tangential to the surface of the
box must be zero. However, it is well known that References
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Two ray shooting approaches are presented for analyzing the high frequency external EM scattering by open-ended
waveguide cavities of relatively arbitrary shape and with a planar interior termination. The contribution to the external
scattering arising from the interior cavity region is found by (i) the shooting and bouncing ray (SBR) method, and (ii) the
generalized ray expansion (GRE) method. The basic difference between the two methods is in the way the rays are initially
launched into the cavity interior via the open end which is directly illuminated. While the SBR method tracks only the
incident geometrical optics field which enters the cavity, the GRE method also intrinsically includes the fields diffracted into
the cavity by the edges at the open end. Also, in the SBR method a new set of rays needs to be tracked for each incidence
angle, while in the GRE method only one set of rays needs to be tracked independent of the incidence angles, although this
is generally a much larger set than that used in SBR for a single incidence angle. Therefore, it is found that the SBR method
is preferable for analyzing the scattering from cavities which are very large electrically and for relatively few incidence
angles. On the other hand the GRE method is preferable for analyzing not only large but also moderately large cavities and
for cases where a large number of incidence angles are needed. Numerical results and comparisons based on these methods
are presented.

1. Introduction may have a thin material coating. While the exis-
tence of a material coating can support surface

This paper presents two ray-based approaches waves excited by the diffraction at the aperture
for analyzing the complex problem of high fre- edge, the present ray tr.--ing methods do not take
quency electromagnetic (EM) scattering by rela- this into account. It is assumed in the present
tively arbitrarily shaped perfectly conducting work that the material coating is sufficiently lossy
open-ended waveguide cavities with a planar in- so that the surface waves are attenuated and
terior termination as illustrated in fig. 1. The two their effects are therefore negligible. An ej" time
methods are: (i) the shooting and bouncing ray dependence is assumed and suppressed in the
(SBR) method [1-31 and (ii) the generalized ray analysis to follow.
expansion (GRE) method [3,4]. The excitation is Referring to fig. 1, the total external scattered
assumed to be an external plane wave, and the field can be expressed within the high frequency
medium surrounding the cavity is assumed to be approximation as
free space. It is also assumed that the geometrical
properties of the waveguide cavity are slowly E' - Ei' + E. + E.,, (1)
varying and that the interior walls of the cavity

where EAm is the field scattered by only the rim
* The work in this paper was sponsored by the NASA/Iewis edge of the aperture at the open end of the

Research Center (Grant NAG3-476), Joint Services Elec-

tronics Program (Contract N00014-89J-i1007), NASA-Ames cavity, and E€,. is the contribution to the scatter-
Research Center (Contract NCA 2-322), and the Ohio ing from the interior of the cavity. The remaining
Supercomputer Center. contribution E", arising from the other exterior
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Fig. 1. Open-ended cavity geometry and the associated high frequency scattering mechanisms.

features of the cavity is not of interest since it modeled by joining together piecewise separable
would depend on the housing in which the cavity waveguide sections can be analyzed via a hybrid

is placed, and will therefore not be considered in combination of asymptotic high frequency and
the present work; in many instances it can be modal techniques [2,3,9,10]. The modal junction
found from the geometrical theory of diffraction reflection and transmission coefficients, which are(GTD) [51 and its uniform extension (UTD) [6,7] associated with the discontinuities formed by

or by the physical theory of diffraction (PTD) [8]. joining together the different waveguide sections,
One notes that in eq. (1), E£.,, is usually more are found efficiently via high frequency tech-
dominant than Eý,, for electrically large cavities; niques such as the GTD and the PTD rather than
this is because the interior wave reflections from via the classical mode matching technique, which
the termination are generally significantly larger is numerically less efficient for very large aper-
than the interior waves reflected from the open tures. The hybrid modal method gives highly ac-
end. Therefore, the effects of multiple wave in- curate results for a wide variety of waveguide
teractions between the open end and the termi- cavity configurations and is therefore often used
nation can be ignored. Likewise, for an electri- as a reference solution to test the more approxi-
cally large aperture at the open end, the multiple mate but versatile ray and beam based methods.
wave diffractions across the aperture contribute However, as with any modal approach, it be-
weakly to E~m and are also ignored. It is further comes cumbersome for guides with very large
assumed that the angles of incidence and scatter- cross-sections (where a large number of modes
ing are limited essentially to a half cone angle of are present) and/or material coated interior
about 70 0 or so about the waveguide axis at the walls.
open end. Outside of this region the scattering by In the case of more arbitrarily shaped cavities
the external features of the cavity would domi- for which modes cannot even be defined in the
nate. The EA is found via the equivalent current conventional sense, the geometrical optics (GO)
method (ECM) [7] combined with the GTD as ray shooting approach proves to be highly useful
discussed in the appendix to this paper. This [1-3]. This approach is frequently referred to as I
method of finding E£, is presented in more the SBR method and will be described in detail
detail in ref. [2]. The scattering mechanism of in section 2 of this paper. In this approach, the
interest in this paper is that due to the cavity (0 part of the incident plane wave captured by
interior E•,. After a background discussion of the aperture at the open end is divided into a
this area, two ray shooting methods for finding dense grid of parallel ray tubes, as illustrated in
E.', SBR and GRE, will be described in detail. fig. 2. These ray tubes are tracked within the

Previously, the E:,, has been found via hybrid cavity through multiple reflections from the inte-
modal, ray and beam techniques as discussed in rior cavity walls and planar termination using the
refs. 11-31. Cavities which can be adequately laws of GO. The ray tubes eventually exit through 3

I
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SD 60 A• CAUSTIC The main limitation of the axial tracking approxi-
mation used in this GB method is that it cannot
adequately account for beam distortion the far-
ther the beams propagate inside a curved cavity,
thus limiting the method to relatively shallow
cavity geometries. Alternatively, the GBs can be
tracked more rigorously via complex rays [11],

0 SAo - -without the limitations of the axial beam tracking
REGION -approximation. However, this method is far more

Fig. 2. 00 ray tubes launched into an open-ended cavity as in cumbersome than the axial tracking method which
the SBR method which demonstrate a ray caustic and a essentially tracks the beam axes like real rays.

shadow region. More recently, the GRE method (described in
detail in section 3 of this paper) has been devel-
oped to retain many of the useful features of the

the aperture where they define equivalent Gaussian beam approach and to overcome the

(Huygen's) sources which radiate the fields scat- problems of beam distortion due to successive
tered from the interior of the cavity E,',v as can reflections in the latter approach [3]. Of course,
be found via aperture integration (A]). However, this GRE approach is not valid at ray caustics, as
this GO/Al (or SBR) approach yields a cruder is true of any pure ray approach. However, from
approximation than the hybrid modal method experience with both the SBR and GRE, the
because GO neglects the fields coupled into the effects of errors resulting from the proximity of
interior via diffraction by the edges at the open ray caustics to the points of reflection and to the
end, and because it remains reasonably accurate plane of integration at the aperture are not seri-
only as long as other interior diffraction effects ous; such ray tubes are small in number and
are weaker than the GO effects. Nevertheless, hence are ignorable as they carry only a small
this approach predicts the dominant high fre- fraction of the total power. In the GRE method,
quency scattering behaviour and can also gener- the incident fields in the aperture at the open
ally predict the peak envelope of the backscat- end are first replaced with equivalent surface
tered field quite well. currents (Huygen's sources) which radiate the

To overcome some of the limitations of the equivalent coupled fields into the cavity interior.
SBR method for analyzing arbitrary cavities, a Next, the open end, or aperture, is broken up
Gaussian beam (GB) shooting technique can be into a relatively small number of subapertures,

used [2,3]. In this method, the fields incident at and the fields coupled into the c•vity are found
the open end of the cavity are expanded in terms by launching a dense grid of ray tubes in all
of well focussed, shifted, tilted GBs. Once directions into the cavity from the phase center of
launched, these beams are then tracked inside each subaperture, and then tracking them within
the slowly varying waveguide cavity only along the cavity through multiple reflections from the
their beam axes, similar to GO rays. However, interior cavity walls using the laws of GO, as
one needs far fewer beams than the number of illustrated in fig. 3. Each ray tube is amplitude

rays which would need to be tracked in a GO ray weighted according to the far zone radiation pat-
shooting approach, and the beams overcome the tern of its respective subaperture but with the
failure of GO at ray caustics. Furthermore, a new cavity walls absent. Like the GB shooting method,
set of rays needs to be tracked for each incidence the GRE method intrinsically includes the fields
angle in the SBR method, whereas the GBs need diffracted into the cavity by the edges at the open
to be tracked only once independent of the inci- end; this results from the boundary points of the
dence angles and the GB expansion intrinsically surface integrations (over the equivalent Huygen's

includes the fields coupled to the interior via sources in the open end) used to find the far zone
diffraction of the incident wave by the open end. patterns of all the subapertures. Also like the GB

I
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5S UD-APEftTURES the GRE method is tracked only once for a wide
range of incidence angles while a new set of ray
tubes in the SBR method must be tracked or for
each new incidence angle. However, a much larger
number of ray tubes must be tracked in the GRE
method, in general, than the number of ray tubes
for a single incidence angle in the SBR method.

INCIDtNT WeAVE It is found that the SBR method is useful for
analyzing the scattering from cavities which are

Fig. 3. Ray tubes launched from subapertures as in the GRE very large electrically, in which the fields
method, diffracted into the cavity by the edges at the open !

end are negligible in comparison with the GO
method, the grid of ray tubes in the GRE method fields, for a relatively small number of discrete
needs to be tracked only once independent of the incidence angles. The GRE method compliments I
incidence angles, although a much larger number the SBR method in that it is useful for analyzing
of ray tubes must be tracked than the correspond- the scattering from moderately large cavities in
ing number of beams in the GB method. which the interior diffracted fields are not negli-

While both the GRE and SBR methods are gible, and for cases where a large number of I
ray tracking intensive, the basic difference be- incidence angles are needed. It is noted that the
tween the GRE met" J .nd the SBR method is GRE method can be used for very large cavities,
in the way the ray-tubes are launched. The SBR and is generally more efficient than SBR for a I
method launches tC.., ray tubes in such a way that large number of incidence angles; however, in
only the GO incident field which is intercepted practice computer memory requirements may be-
by the open end is tracked within the cavity, come excessively large because the ray data from I
whereas the ray tubes of the GRE method are all the rays in the GRE must be stored for later
launched within the cavity in such a way that the use as the incidence angle is changed. This prob-
fields diffracted into the cavity by the edges at lem can be overcome by using auxiliary data
the open end are intrinsically included. It is noted storage units (such as tape and hard disk drives I
that both methods use the laws of GO to track or auxiliary RAM) to store the ray data.
the ray tubes within the cavity once they have The SBR and GRE methods will be described
been launched, and the aperture integration in more detail in sections 2 and 3 of this paper, I
method is used to find E•,, from the ray fields, as respectively, and numerical comparisons will be
discussed above in the paragraph on SBR. Also it presented in section 4. The appendix briefly de-
is important to note that the set of ray tubes in scribes the method of finding Em. 3

F I
I
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2. The shooting and bouncing ray method discussed here. The ray tracing of each ray in-
volves, first, finding the intersection of each ray

In the SBR method, an incident plane wave is with the cavity. For complex cavities, numerical
modeled by a set of parallel geometric optic rays. root finding methods must be used. This step is
The rays are started or "launched" from a plane the most computationally time consuming step of
orthogonal to the propagation vector ki of the the SBR, generally comprising 60% to 90% of the
incident wave as shown in fig. 4. Since this plane total computation time. The ray is then reflected
is an equi-phase surface of the incident plane inside the cavity at this intersection point. The
wave, it is chosen to be the zero phase reference direction vector of the reflected ray is deter-
for all the rays. Generally, a regularly spaced grid mined, and this procedure is then repeated until
of rays are launched from this plane. The actual the ray exits from the cavity.
density of the rays required is dependent on the As the ray is tracked within the cavity, the
complexity of the geometry of the cavity. For field amplitude of the ray is computed at each
more arbitrarily shaped cavities, 10-20 rays per intersection point u,;ing geometric optics. Be-
linear wavelength dimension is required for a cause it is necessary t: compute the fields only at
convergent backscattering solution. A ray the intersection points and not along every point
launched from the starting plane that enters the along the rays, the well known problem of the
cavity is tracked as it bounces within the cavity GO field being singular at the GO ray caustics is
until the ray exits the cavity through the aperture. generally avoided. The latter problem would oc-
The complex field of the ray is computed as it cur only when a ray caustic occurs right at or
bounces using the laws of geometric optics. This extremely close to an intersection or interior sur-
involves calculating the ray tube divergence fac- face reflection point. From experience, this has
tors and reflection coefficients. After tracing all been found to be extremely rare. Should such a

the rays that enter the cavity, the backscattered situation occur, this ray can be discarded without
field and RCS is then computed from the sum of noticeably affecting the final RCS result if a
the contributions from each individual ray. sufficiently large number of rays are launched. In

As stated earlier the advantage of the SBR geometrical optics, associated with each ray is a
method over previous methods based on modal differential ray tube that can converge or diverge
analysis is that there is virtually no restrictions as the ray propagates. The electric field E(x,, y,,
placed on the shape of the cavity. Because this z,) at 'a reflection point (x,, Yo, z,) immediately
method is based on high frequency methods, after the reflection is found iteratively from the
though, the cavity and its detailed features must field at the previous reflection point from
be large compared to the wavelength. The cavity
walls are assumed to be perfectly conducting. E(xj, y,, z,)
Thin layers of material coating may be included
on the internal cavity walls. Complex termina- = (r) .E(x,_ , yj -, z,- )(DF)eJkJ, (2)
tions as well as other conducting interior scatter-
ers may be included. Most implementations of where k is the wavenumber in the propagation
SBR use piece-wise analytic functions to describe medium which is assumed here to be free space

the complete cavity including the termination, in which the cavity is embedded, s is the distance
However, numerical descriptions may also be used between the consecutive points of reflection, and
as long as there are accurate interpolation meth- E(x , _ -, yj -, z_ -) is the electric field at the pre-
ods available to find the intersection between the vious point (xit, yi-1 , z,-,). (r) is the planar
rays and the cavity as well as to find derivatives reflection coefficient matrix at the reflection point
up to second order at these intersection points, where the original curved surface is replaced by

Because the mathematical details of the ray its local tangent plane at that point and (DF) is
tracing can be found in ref. [12], only a general the divergence factor which governs the spread-
discussion of the ray tracing procedure will be ing of the differential ray tube after reflection.
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The well known Fresnel (planar) reflection The curvatur matrix propagates along a ray given

coefficients are used and can be found in most by the relation
elementary texts on electromagietics. Since the 1
reflection coefficients of the electric field are b" ([Oa]-e I +slI), (7)
different for its components parallel and perpen-
dicular to the plane of incidence the electric field where a and b are the two points along the ray
incident at the intersection (reflection) point must (a precedes b along the ray), 0° and 0b are the I
therefore be decomposed into its parallel and curvature matrices at points a and b, respec-
perpendicular components. tively, s is the distance between a and b, and I is

The divergence factor ((DF) in eq. (2)) is com- the unit dyad. Note that for the rays associated
puted from the geometric optics formula with a plane wave, the curvature matrix remains

the zero matrix as the rays propagate.
1 1 After a ray is reflected from a non-planar

( )- 1R, X /I ' surface, the wavefront of the ray will no longer be U
planar and the curvature matrix will no longer be

where R, and R 2 are the two principal radii of zero. The curvature matrix for a ray right after a
curvature of the reflected ray tube at the previous reflection 0o is related to the curvature matrix of
intersection point and s is as defined for eq. (2). the ray right before the reflection 0' and the
Using the Q-matrix formulation of Deschamps curvature matix of the surface at the intersection
[13], the two principal radii of curvature (RI, R 2) point Q0 by enforcing the phase matching condi-
can be found from the elements of a 2 x 2 curva- tion of the incident and reflected wavefronts at I
ture matrix called the 0 matrix, the reflection surface. As mentioned earlier, the

1 mathematical details of the above described pro-
R. cedure can be found iur ref. 1221.

". ({( Q1 + Q2) 2)1. Aperture integration

+ Q + Q22) 2 
- 4(QQ - All of the rays that enter the cavity are tracked

l +-within the cavity, as described in the previous
(4) section, until they return back to the open end.

The scattered field can then be found from the
where Q,,,, is the (m, n)th element of 0. The ray standard physical-optics approximation by per-
associated with a plane wave is neither coverging forming an integration over the equivalent sources
nor diverging and has a curvature matrix given by in the aperture. Using a magnetic current formu-

(5) 0lation, the aperture field is replaced with an
o-[0 U (5) equivalent magnetic current sheet Ks whose value

A ray with a perfect circular wavefront with radii is approximated as follows:

of curvature Ro has a 0 matrix of Ks 2 E(xN, YN, 0) ×X, over the aperture,

'~0, outside the aperture.
( o 8) i4 " (6) The above approximation is essentially of the

0 j0 Kirchhoff type which employs only equivalent
magnetic currents instead of both electric and

In the SBR method, all rays initially have the magnetic currents. Hence, the strength of the
zero matrix as their curvature matrix at their magnetic current is doubled as evidenced by the
starting points on the initial orthogonal plane. factor of 2 present in eq. (8). An improvement to

I
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the Kirchhoff type approximation in eq. (8) would striking (or exiting) the aperture at (x,, y,) with
be to include Ufimtsev equivalent edge currents direction vector (s,, s,, s,), the field of the ray
(as in the PTD) [8]. However, the latter effects tube across the aperture can be approximated by
are small for electrically large apertures and for
aspect angles not close to grazing the aperture [EL(x, )] [E.(xi, y,) ] eikds,(X'_,)+s,(Y-Y,)].
plane, and are thus ignored. For a cavity with its E,(x, iiy) [E,(xi, yi)
aperture on the z - 0 plane and the open end (10)
pointing in the +2 direction as shown in fig. 4, (10)
S-2 in eq. (8). The cavity backscattfred field can Substituting eq. (10) into eq. (9) and noting that

for each ray tube, E,(xl, y,) and Ey(x,, y,) are
e -jkorindependent of the integration variables x and y,

E - e- [ + ] as kor o, the physical optics integral of eq. (9) can be
r written as a summation over all the ray tubes:

1 [JA:] j.asry of: thjneednto1h0negainvrabe ny-, "k 2ff zdx dy e[A] 2w

(9) XC5 A EL. ...,(Ax, Ay,),, (11)

where
u - sin 0' cos Oi, v - sin 0' sin 0'.

h -i T'I dx dy e jkd(-s,)x÷(L--,)yj

E, and EY are the x and y components of the -j dyx• Ay,) h it
field exiting the cavity aperture. rY tube

In reflector antenna problems, the radiated far and
fields are computed by performing a similar inte-
gral over the reflector aperture plane. For those (Ax1 Ay,) O area of the exit ray tube.
problems, the points in which the aperture fields
are known are generally over a regularly spaced 1 is the normalized Fourier transform of the
grid, and such methods as the fast fourier trans- ray tube shape function normalized with respect
form (FF17) can be used to perform the integra- to the ray tube area. Methods to compute this
tion in eq. (9) [14]. Even if the points were not all transform accurately by shooting auxiliary rays
uniformly distributed, the fields in the aperture are described in ref. 112]. It has been found
of a reflector antenna are smoothly varying and however, that if all the exiting ray tubes are small
can be easily interpolated. For the cavity prob- compared to the wavelength, then the approxima-
lem, however, the position of the rays over the tion
aperture plane will not be uniformly distributed
and interpolation schemes are difficult. Instead, sin(u - s) sin(v - s,) (121the integration is performed discretely over each u -s' v -s,
ray tube, and the total scattered fields is found
from the superposition of the scattered fields of is found to be quite accurate.
all the ray tubes. Additionally, if the output ray Finally, the output ray tube area (Ax, Ay,) can
tube is small compared to the wavelength, the be found by using the ray tube divergence factors
phase change across the ray tube can be approxi- calculated earlier. The area of the ray tube as a
mated by a linear phase variation. For a ray ray exits is related to the area of the incident ray

I
I
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tube (Axao, Ayo) via the product of the diver-
gence factors:

(Axi, Ay,)

N 2( COS 1'0"i- (DF)i Cs (xAo) (13)/• . •.,,g_

The ratio of the cosines accounts for the oblique
angles of the ray tubes entering and exiting the
cavity. 0' is the angle formed by the incident
direction vector of the ray and the normal to the
integration plane while 01 is the angle formed by
the exiting direction vector and the normal to the
integration plane.

3. The generalized ray expansion method !

As mentioned in the introduction, the basic .l

difference between the SBR method and the
GRE method as presented here, is in the way the ,
ray tubes are initially launched inside the cavity. Fig. 5. Coupling of the incident plane wave into the cavity

The procedures for tracking the ray tubes inside using equivalent surface currents in the aperture (open end). I
the cavity using the laws of GO and for obtaining (a) Original problem; (b) equivalent problem.

the cavity scattered field E,. via aperture inte- the unit surface normal of
gration are identical in both approaches. These the ingA at the point r',ci
procedures were described in detail in the last pointing out of the cavity. Ie
section and will not be repeated here. According to Huygen's principle, each in-

In the GRE method, the incident field in the finitesimal current element (or Huygen's source)aperturhe the cavity is replaced by equivalent defined by Jq(r') ds' and Msr(r') ds', wheresurface currents which radiate the desired fields ds' is an infinitesimal surface area at r'e 'A',
surfce urrntswhih rdiat th deire filds launches spherical waves which can be trackedfrom the aperture into the cavity, as shown in fig. laun thercav e wsich GO. He in

5. The exact aperture fields can be used if they within the cavity via the laws of GO. However, in
can be found; however, for sufficiently large aper- practical applications it is useful to deal with a
tures, the fields launched into the cavity by the discrete array of a small number of finite size
incident wave can be found via a Kirchhoff ap- sources which also launch waves that beomeayproximation for the aperture field. This is reason- spherical at a reasonably short distance away, 1able for incidence angles which are not close to rather than to deal with a continuum of infinitesi-grlazing along the aperture surface. The equiva- mal sources. Hence, the original aperture 'A islent electric and magnetic surface currents in the divided into a relatively small number of subaper-ltecture A ar et ic srv e c s tures as in fig. 6. Since the aperture in fig. 6 is Iaperture 1Aare then gven b rectangular, it is convenient to use rectangular

subapertures (non-rectangular apertures can be,/(')- -E×H(r') 4, (14) subdivided, for example, into polygonal subaper-

)- -Ei(r) XA, tures); in particular,

where E' and H' are the incident electric and
magnetic fields, respectively, r' is the vector from YA - S,, (15) ISi
the origin 0 to any point in Y'A, and A is again '-

U
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tures can be well approximated by a superposi-
tion of an array of spherical waves originatingI from the phase center of each of the Y' subaper-
tures. These waves can then be tracked along

f SOME POlNI their associated rays which undergo successiveU . . V" IN THE reflections within the cavity as in fig. 6, just as in
the previously mentioned conventional ray shoot-
ing GO (SBR) approach. Furthermore, the initial1 • 0 amplitudes of the rays emanating in all directions
(in the half-space forward of the subaperture)
from the phase center of each subaperture are

Fig. 6. Ray field originating from the phase center 0 of the directly given by the radiation pattern of that
Ith subaperture of area S, (shaded). subaperture with the cavity walls absent. The ray

field originating from the phase center 0, of each
w r tsubaperture is broken up into a dense grid of ray
where the dize of the typical lth subaperture area tubes which initially have spherical wavefronts

nS t is determined to a large extent by the overall (before they reflect from the curved walls of the
length of the cavity and the size of the original cavity), as in fig. 7. It is noted from fig. 7 that it is
diaperture DA. In general, the maximum linear usually not necessary to launch ray tubes in all
dimension D of the largest subaperture should directions in the half-space forward of the sub-
be less then w v where L is the overall length aperture. In practice, the ray tubes are limited to
wvof the waveguide cavity and A is the free space a cone with a half-angle less than 90 * and ap-
wavelength. Furthermore, the number of sub- proximately 15 * greater than the maximum angle

iapertures -' should be greater than one. Other- the incident plane wave makes with the cavitywise, the subaperture grid can be chosen arbi- axis. The electric field along the pth ray tube

trarily for convenience; however, for efficiency launched from the phase center 0g of the r th

the smallest possible number of subapertures subaperture, before the ray tube encounters a

should be used which yields an adequately con- wall, is then given by

vergent solution.

With an appropriate choice of subaperture dis-
cretization, one can then show that the field e
radiated into the cavity by the equivalent current Epl(r)., C,(rP,)- , (16)

Selements distributed over each of the subaper- r.,

A×XIAL RAYSP AY TUBES AILPY

0IX
I zzi

'L
I Ith suBAPERTURE

Fig. 7. Grid of ray tubes originating from 0, of any subaperture of area S1.p
I
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where r,, - ;Prpl is the vector from O0 to a point approach requires fewer rays to be tracked for 3
along the pth ray tube before its first reflection. each incidence angle, even though the total num-
Ci(;fP) is the far zone vector radiation pattern of ber of rays tracked in the SBR is much larger
the electric field evaluated in the direction fpt than those in the GRE when considering a wide U
with the cavity walls absent, and is thus given by range of incidence angles. Therefore, the SBR

appears to be more efficient if only a few (say ten

jkZOff. fp X ;l XJ." r;or less) incidence angles are required in the cal-
4,) -- culations, whereas the GRE is more efficient if

several incidence angles or a continuous range of
+Yo0 ,, XMeq(•;1)] ejklW'r"f ds', (17) incidence angles are necessary. I

where r' is a vector from 0 to the sources at any
point in St. Equation (17) can be evaluated nu- 4. Numerical results
merically, but if the Ith subaperture is a polygon
and the incident field is a plane wave, then eq. The numerical results presented here are in
(17) can be evaluated in closed form. This is the form of rader cross-section (RCS) vs. 6, where
because the Fourier transform of a constant am- 0 is the angle between the propagation vector of
plitude, linearly phased function existing over a the incident plane wave ki and the waveguide I
polygonal area is known [15], and eq. (17) reduces cavity axis. RCS is defined by
to such a transform for the case of plane wave 2
incidence. Es

As shown in fig. 6, the pth ray originating "r -,lim 4nr2' [E'2, (18)
from 0, is tracked to some interior point at r,.
This ray tracking is performed in exactly the same where r is the distance from the open end of the
manner as in the SBR method described in sec- cavity to a far field observer, and IEi and IEl I
tion 2. All of the ray tubes are tracked within the are the magnitudes of the incident and scattered
cavity until they return back to the open end. The fields, respectively. The units of RCS are given in
field E.,, is then found by performing an aper- "decibels relative to a square wavelength" I
ture integration over the equivalent sources de- (DBSW) (i.e. 10 log1 0 o with a in square wave-

fined by the projection of each ray tube in the lengths). The ray tracing subroutines used in the
plane of the aperture 1A as the ray tube exits the codes to generate the numerical results for both
cavity. Again, this is exactly the same procedure the SBR and GRE methods are adapted from
as in the SBR method. codes developed by Prof. S.W. Lee at the Univer-

As indicated by eqs. (16) and (17), only the sity of Illinois, and are based on a super-elliptic
initial amplitude coefficient Cl(Pl) of the pith geometry model. U
ray tube depends on the incident field, and fur- Figure 8 shows the RCS patterns of a rela-
thermore, this coefficient is found given only the tively small rectangular cavity, with the interior
initial direction f,,, of the ray tube. Therefore, cavity scattering calculated using the SBR and U
the ice cream cone-shaped grid (fig. 7) of ray GRE methods and compared with a reference
tubes of each subaperture can be launched with solution based on the hybrid modal method. Per-
unit amplitudes, tracked throughout the cavity pendicular and parallel polarization in all the
and the corresponding ray data stored. Then, as figures refer to the incident electric field vector
the incident field changes, this ray data can be being either perpendicular or parallel to the plane
amplitude weighted according to eqs. (16) and defined by the direction vector of the incident
(17), without having to re-track the rays. plane wave and the axis of the cylinder (the I

It is noted that a large number of ray tubes z-axis). Both of the ray-based methods agree rea-
need to be tracked in the GRE, albeit only once, sonably well with the reference solution, which is
for a given waveguide cavity. In contrast, the SBR somewhat surprising considering the high fre-

I
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PlLM I"hOTER(IWR hII0W' method requires that a new set of rays be tracked
for each incidence angle, the SBR results are

"calculated at 5 degree increments in this figure
(represented by the diamond shaped markers).
The GRE results are calculated at much finer
increments because only one set of rays is tracked
for the entire range of incidence angles, and the
scattered field for each incidence angle is calcu-
lated very quickly from the stored ray data. It is

SotfNSI~sG oI I.*LCHGTS noted that in both of these ray-based methods,
-. 0 ?-the ray tracking typically requires more than 80%

of the total CPU time used in the calculations,
and for the data plotted in fig. 8, both methods
used approximately the same total number of

•,• : , / , / \ /rays.
In the remainder of the numerical results pre-

sented here, only the scattering component due
I' ' hi to the cavity interior will be shown, i.e. no exter-

I nal scattering effects are included, such as the
S, ,scattering from the rim. Figures 9 and 10 show

,0. & a S. *. & X S ,& 4& the RCS patterns of a larger rectangular cavity
T(HETA (DEGREES) and an annular cavity with a retangular cross-sec-

9(a) I polarization tion, again comparing GRE and SBR with a

1 modal reference solution. The GRE and SBR
9.. 0 00 methods agree quite well with the reference solu-

..... ....... tion in the case of the rectangular cavity, and
"0 reasonably well in the case of the annular cavity.

40 "It is expected that the two ray-based methods will
have slightly more error when used to analyze

S..cavities with curved interior walls because they
,' ... cannot account for curved surface diffraction.

/i However, this is a relatively weak effect, espe-
I cially for electrically large cavities.

V 'Figure 11 shows the RCS patterns of a large
a' IL 3 A IL a • AL 4& cavity which transitions from a rectangular cross-THETA (DEGREES) section at the open end to a circular termination

(b) 11 polarization and the axis of the cavity follows third-order
Fig. 8. RCS patterns in the z-z plane of a small rectangular polynomial "S-bend". No modal reference solu-
cavity calculated using the GRE, SBR and hybrid modal tion is available for this geometry, so only the
(reference solution) methods. The scattering from the rim is ORE and SBR results are shown, and they agree
calculated using the equivalent current method. - hy- with each other reasonably well.

brid modal......ORE; 0 SIR; - - - . Comparisons of the SBR solution and the

modal solution for the RCS from a large circular
quency asymptotic approximations of ray tracing cylindrical cavity can be found in ref. [12). A
methods. The scattering from just the rim at the ORE solution is not available for this cavity at
open end is also shown in this figure, and was the present time because of the extra algorithm
found using the equivalent current method (ECM) development necessary to subdivide a circular
described in the appendix. Because the SBR open end into appropriate subaperture domains;
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Vt 0Planr Teminaion
(P 0 PlarTratilarizaion o0 In , is

"Ogg , Plns Ternmtm to i
01 s. 0. S. 20. 25. 30. 35. 40. 45. -45 -30. -S. 0. . 30. 45.

THETA (DEGREES) THETA (DEGREES)
(a) II polarization (a) I. polarization

VII 0
00

Fig. 9. RC'S patterns in the x - z plane of a larger rectangular Figl. 10. RCS patterns in the y - z plane of a large annular
cavity calculated usingl the GRE, SBR and hybrid modal cavity with a rectanglular cross-section calculated using the
(reference solution) methods. -- hybrid modal; -.- GRE, SBR and hybrid modal (reference solution) methods.S

GRE; o SBR. -- hybrid modal; -.- GRE; o SBR.

however, such an algorithm should be available in Appendix I.I
the near future. All of the GRE results presented
here have been for cavities with rectangular open The contribution to the external scattering
ends, which are very easy to subdivide into a from just the rim of an open-ended waveguide 3
number of rectangular subapertures. However, cavity is found via the ECM as follows:
the GRE method can in principle be applied to jkZo e-t*" X q '
cavities with fairly arbitrarily shaped, non-planar E•, - - f, [xfxl I~'[
open ends in a straightforward manner. As men- 4.n • m

tioned above, work is currently under way to +YoPXMe(t')ir)] e'•'" dEr, (19)
develop subaperture gridding algorithms for arbi-

0I

trarily shaped open ends which require a mini- in which r denotes the position vector to the far

mum of user interaction, zone observation point from a conveniently cho-

I
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electric (l]q) and magnetic (Mgq) current sources
is performed along the rim or the contour formed

•'I by the aperture edge at the open end. These
m equivalent currents can be found via GTD in
a 0 •terms of the fields incident on the edge and the

Planar Termination appropriate diffraction coefficients as is done in
SI~ •"1 • ---- •-/•0 ref. [2).
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Analysis of EM Penetration into and Scattering
by Electrically Large Open Waveguide Cavities
Using Gaussian Beam Shooting

I ROBERT J. BURKHOLDER, MEMBER, IEEE, AND PRABHAKAR H. PATHAK, FELLOW, IEEE

I An approximate Gaussian beam (GB) shooting method is into) an electrically large open-ended waveguide cavity
presented for analyzing the electromagnetic coupling into and of relatively arbitrary shape which contains an interiorI scattering by electrically large perfectly conducting, open-ende4 t
nonuniform waveguide cavities with a slowly varying wall termination, when it is illuminated by an external source
curvature. The method is illustrated only for the two-dimensional as depicted in Fig. 1. In this paper, the configuration
(2-D) case; however, the ideas developed here can be extended of Fig. 1 is surrounded by free-space and has perfectlyi to deal with the corresponding three-dimensional (3-D) situation. conducting interior cavity walls which may have a thin
An external plane wave directly illuminates the aperture (open
end) and the incident field in the aperture at the open end is material coating. It is analyzed by employing a set of
found via the Kirchhoff approximation. This aperture field is then GB field basis functions to represent and track the fieldsI expanded into a discrete set of identical GB's which are launched which are coupled from the incident wave, via the open
radially into the cavity from an array of preselected points in front end, into the interior waveguide cavity region. It
the aperture, and this array of points corresponds to the phase
centers of the subapertures into which the aperture is divided. The is assumed in the present analysis that the incident fieldI initial beam launching amplitudes are found by matching GB's to directly illuminates the aperture defined by the open front
the radiation field of each subaperture. The GB's thus launched end of the cavity, and that the aspects of incidence and
from the aperture propagate into the waveguide cavity and are
tracked to the interior termination via multiple reflections at the scattering are primarily restricted to within about 600 of
cavity walls. For the sake of efficiency and simplicity, the GB's are being normal to the aperture, so that one may employ the
tracked axially in this paper using the rules of beam optics which Kirchhoff approximation to represent the incident fields in
ignore any beam distortion upon reflection at the walls. The effects the electrically large aperture. Outside this angular region,
of beam distortion are not significant for relatively slowly varying
waveguide cavities. Finally, the field scattered into the exterior the external features of the cavity will generally dominateE by the termination within the cavity is found using a reciprocity the scattered field.
integral formulation which requires a knowledge of the beam fields An advantage of the present approach for analyzing the
near the termination. Numerical results based on this GB approach
are presented and compared with results based on an independent configuration of Fig. I is that the GB's need to be trackedI reference solution. only once within the cavity independent of the excitation

or changes in directions of incidence and scattering; it
1. INTRODUCTION is necessary only to change the initial beam launching

The problem of representing high frequency electromag- amplitudes with change in source illumination, because
netic (EM) fields which propagate within closed waveg- the beam launching directions are made independent of
uides of relatively arbitrary shape (for which modes cannot the source excitation. Furthermore, this approach implicitlyI be defined in the conventional sense) is a rather complex takes into account, to within the Kirchhoff approximation,
one. Its solution is crucial for dealing with the important the contribution to the field coupled into the cavity via
problem of EM scattering from (as well as interior coupling diffraction by the edges at the open end. The method

described in this paper has been discussed briefly in [I], and
Manuscript received May 29, 1990; revised March 11, 1991. This work is based on the work reported in 12]; these two references
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Fig. 1. Open-ended waveguide cavity and the scattering mechanisms associated with plane wave
illumination. I
terms: via an aperture integration based again on the Kirchhoff

s = trim +et + (1 approximation, wherein one employs the fields associated I
: •m+ f ,+ f (1) with the beams which are reflected back to the open

where f"rm is due to the scattering from the rim at the end before reaching the termination to define equivalent

open end, fezt is due to the scattering from all external sources in the aperture at the open end. It is noted that the

features of the cavity configuration other than the rim at cavity scattering contribution Etell usually arises from the

the open end, and Eco• denotes the scattering arising from presence of tapers in the waveguide cavity cross section.

the incident EM energy which couples into and propagates Elef1 will not be considered further in this paper because

within the interior of the cavity before radiating out via the of space limitations, and emphasis will be placed on the I
open end. The contribution Elt is not considered here as dominant term fteri.
it depends on the specific geometrical configuration which In the present approach, the fields in the aperture at
houses the cavity; however, it could in general be found the open end which are excited by the incident wave, are

via high frequency techniques such as the GTD [3] (or expanded into a set of identical, angularly shifted GB's

its uniform version, the UTD (4], [51) or by the PTD [61, whose initial beam directions at launch have a constant

[7), [5]. f'•"m may be found using the equivalent current angular interbeam spacing. Thus a set of GB's are launched

method [5) combined with the GTD. Since the technique radially into the cavity from each point in an array of U
for finding t'r"i has been described previously in some preselected points in the aperture; i.e., all GB's in a given

detail [1], (2], it will not be repeated here. Z' is found set have their waists centered at the point located in the
using the GB shooting technique presented here. In general, array which defines that particular set. Therefore, each set

f"I can be further decomposed as: of angularly tilted GB's are launched from points in the
aperture which are spatially shifted with respect to the

gcav = fterm + fref. + mui t (2) launching points of its neighboring or adjacent sets of
fcav GB's as illustrated in Fig. 2(a). This manner of launching I

where f" is usually the dominant contribution to •Cat GB's is in contrast to the method of launching a grid of
and is due to the incident EM energy which is coupled parallel geometrical optics (GO) incident ray tubes into a
into the cavity and then propagates to the termination from cavity illuminated by a plane wave as in the shooting andwhere it is reflected to radiate out from the open end. bouncing ray (SBR) method [8], [1], [2] for analyzing the
gfref, is due to the incident EM energy coupled into the same problem. As Fig. 2(b) illustrates, the SBR method

cavity and which is reflected back without reaching the which tracks only GO rays therefore produces regions
termination to then radiate out from the open end. Emu"' of geometrical shadows within the cavity which would
describes all the higher order multiple wave interactions otherwise have been penetrated by the fields diffracted from
within the cavity not included in flern and f . fm~tt the edges a! the open end, and this GO approach also fails
is generally negligible compared with fterm and/or frefi near ray caustics which may be present within the cavity.
for electrically large cavities and hence will be neglected On the other hand, the GB shooting method overcomes
here.' ft"' can be found by tracking the fields coupled into both of these difficulties present in the GO based SBR
the cavity using the GB shooting method presented here, solution. Also, far fewer GB's need to be tracked within
and allowing those beams which return to the open end the cavity than ray tubes, in general, because a new grid of I
before reaching the termination to radiate into the exterior ray tubes needs to be tracked in the SBR method for each
region via the open end. 9`d0i may then be calculated new direction of the incident plane wave. Nevertheless, it

tIih muliple wave interactions across the electrically large aperture may be mentioned that the SBR method is useful in that
are weak in comparison to the first order effects being considered here; it predicts the dominant scattering effects of open-ended
likewise the multiple wave interactions between the open end and the cavities (Fig. 1) quite well at high frequencies.
termination are negligible if the interior reflection from the termination
is significant since the interior reflection from the open end is generally While there is some arbitrariness in choosing the spatialI
much weaker for electrically large openings. shifts or locations of the array of points from which to
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P SUSBAPTUME the wave propagation phenomena within the cavity. Such

TYPICAL E•KA an approximation allows one to employ the simpler rulesIE of beam optics which provide information on transforming
an incident GB into a reflected GB upon reflection at
the interior cavity wall. This real (or axial) ray tracking
approximation is valid only if the GB's do not suffer

INCIoDEN appreciable distortion upon reflection. If an appreciable
WAVE beam distortion occurs upon each successive reflection

so that the reflected beams no longer remain Gaussian
about their beam axis, then one must resort to higher

(a) order approximations to calculate beam reflections, or even
INCN PLANE require that the beams be tracked as complex rays [9]-[15].

V The complex ray tracking procedure is of course more
cumbersome than real ray tracking. In order for the real
(axial) ray tracking approximation to be valid, the initial
GB parameters must be chosen such that the GB's remain
reasonably well focused as they propagate from the open

0 BHAu -end to the region near the termination. Consequently, the
hula" "initial GB waists should be chosen to be reasonably wide

(b) so that the GB's remain sufficiently well focused as they
Fig. 2. GB and GO ray launching schemes for cavities. (a) The propagate or evolve within the cavity; however, the initial
GB shooting method. (b) The geometrical optics ray shooting waists cannot be chosen to be too wide as the GB's must
method. adequately fit within the waveguide as they propagate via

launch the different sets of GB's, as well as in choosing interior reflections, and maintain a sufficient degree of

the constant angular interbeam spacing between the GB's resolution. Furthermore, the spot size of the GB's must

in each set, there are physical considerations which must not be too large as compared to the dimensions over which
be invoked in order to accurately and efficiently track the surface curvature changes or else beam distortion effects

the GB basis functions as they evolve within the cavity can become significant and the axial tracking approximation

after being launched from the aperture at the open end. then tends to become less accurate. It is noted that the GB

These physical considerations provide information on the expansion coefficients and the interbeam angular spacing

choice of the initial beam parameters at launch. Thle initial are based on far field patterns arising from subaperture

beam parameters are obtained in a quite straight forward domains or windows defined naturally around the array of

manner and they will be discussed bnrefly when references points from which sets of GB's are launched as in Fig.

to previous related work are cited below in this section; they 2(a). The initial waist size determines the width of a beam
willaso prevo relled tor insome itedbeta in theis t section tin the far field; this also then determines the array point
will also be alluded to in some detail in the next section spacing and hence the subaperture domains from which
which deals with this aspect of beam launching (or beam the beams are launched. Thus the size of the subaperture
shooting). Furthermore, it is noted that the physical con- domains is related to the initial beam waist size. In the
siderations which provide the conditions and guidelines for course of this investigation, it has been found that the
a reasonable choice of the initial GB launching parameters initial waist size should be about one-third to one-half the
remove most of the arbitrariness in the selection of these width of the opei. end of the cavity so that the beams fit
parameters. into the cavity and stay relatively well focused as they

Once launched, the GB's are tracked axially from the evolve within the cavity via beam reflections at the slowly
open end to the termination region in the back of the varying cavity walls. The number of GB's launched (and
cavity via multiple reflections at the interior cavity walls, hence the interbeam spacing at launch) depends on how
It is assumed that interior diffraction effects are small well one can reproduce the subaperture far field pattern
uo that only the beam reflection effects are dominant. with the cavity walls absent (Kirchhoff approximation).
This assumption requires that the interior walls of the Typically, one needs to match about 3-4 GB's per lobe
cavity be slowly varying and smoothly continuous with no of the subaperture far field pattern; this in a sense provides
abrupt discontinuities in the region between the open end completeness of the initial GB expansion at launch based
and the termination in which the GB's are to be tracked purely on physical considerations. This choice of initial
(90° interior corners are allowed because they introduce beam waist size and the number of beams launched has
no diffraction effects, as in the case of a cavity with a been found to be adequate for waveguide cavities which are
rectangular cross section). In the present approach, each about 4 times as long as they are wide; for longer cavities
individual GB is tracked as a whole only along it's beam it may become necessary to track the GB's via complex
axis which has a real ray direction in space. This axial rays, or alternatively, one could restart and again axially
GB tracking approximation is employed here because of its track a new set of GB's after the initial set has propagated
simplicity and because it provides a physical insight into a certain distance within the cavity, so as to minimize
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I
the effects of beam distortion upon successive reflections. the exterior. It is noted that the GB's contributing to Eefi

However, both of the latter corrective measures, which have mentioned earlier are reflected back to the open end without
not been incorporated into the present analysis, will add ever reaching the plane near the termination, and therefore
significantly to the computational time [16], (17]. Also, a do not contribute to this reciprocity integral.
self-consistent expansion of the fields in finite apertures The analysis in this paper will be restricted to two-
which is based on the Gabor representation [18], [19] dimensional (2-D) geometries to illustrate the method as
has been developed recently by Felsen and his coworkers indicated earlier; however, the ideas developed here can
[20], [15]; this can certainly be used as an alternative be extended to deal with the (three-dimensional) 3-D case.
procedure for beam launching. The coefficients of this The GB's launched in the 3-D case may be assumed to be I
expansion can found rigorously using a biorthogonality initially rotationally symmetric and the beam polarization
property, but in certain cases they can be found by sampling can be selected to match the subaperture far field patterns
the aperture fields or the far field radiation pattern of the as in the 2-D case. The GB's will become astigmatic upon
entire aperture, depending on the initial choice of array reflection from an arbitrarily curved cavity wall and the i
or lattice spacing in the expansion. An advantage of the subsequent axial tracking of such beams within the cavity
Gabor type expansion is that it guarantees completeness will have to be found via rules for reflecting astigmatic
a priori and essentially removes any arbitrariness in the GB's within the axial approximation. Fortunately, these i
choice of initial beam parameters once the lattice spacing rules of beam reflection (i.e., beam optics) are closely
is chosen. Since this Gabor based expansion gives rise to analogous to the laws of GO ray optics which govern the
nonidentical GB's with nonuniform angular or interbeam reflection of astigmatic GO ray tubes. In the present 2-D
spacing, the GB's resulting from this expansion cannot analysis, the geometry lies in the x-z plane and TMy refers
in general satisfy the assumptions required to track the to the case where the magnetic field is transverse to the ý
GB's inside the cavity via the axial approximation thereby direction so that the electric field (E) is polarized in the
necessitating that these beams be tracked as complex rays. j direction. Likewise, TEy refers to the case where the I
Clearly, this Gabor based method for beam launching, as electric field is transverse to ý so the magnetic field (H-)
well as complex ray tracking of these beams within the is polarized in the j direction. Also, U = ýU denotes a
cavity, merit further attention and will form a part of the p-directed field quantity, such that U = E for TMi and I
ongoing and future work on this important topic of wave 0 = Il for TEE,. An e"•Jt time dependence for the fields is
propagation in nonuniform waveguides; however, it would assumed and suppressed throughout the following analysis.
be extremely important to develop more efficient ways,
if possible, to track GB's via complex rays to make this II. GAUSSIAN BEAM LAUNCHING FORMULATION
method more practical. It is hoped that this proposed work Consider the 2-D open cavity geometry of Fig. 3 which
along with the information available from the methodology isite by ope wave. geom e fie. in thedeveloped in the present paper would provide ways to is excited by a plane wave. The plane wave field viadevelop approximate but even more efficient, accurate and aperture at the open end of this cavity can be represented via

useful techniques for beam launching and tracking. the Kirchhoff approximation by the unperturbed incident
In the present analysis, the termination is assumed to field UP. This aperture field UP can be represented as a

be a planar, perfectly conducting surface for simplicity; sum of spatially and angularly shifted GB's by

whereas, it is indicated later on as to how one may U'(x,z)l.=o =EZ A .,(O,)B(xmn,z,.;b)Iz=o (3)
handle a more complex termination. A generalized reci- m n
procity integral defined over a conveniently chosen plane
(or waveguide cavity cross-section) located sufficiently near where Amn(Oi) are the expansion coefficients and 8, is
the termination, which requires a knowledge of the fields the plane wave incidence angle. B(X.n, zmn; b) is the 2-D
tracked down to this termination plane from the open front GB basis function for a beam along the Zmn axis whose
end, then directly furnishes the contribution to the external waist is located at Zmn = 0. Xmn and Znn are the relative
scattered fields arising from the waves reflected out of the coordinates of the mnth shifted, rotated beam given by the
cavity by the interior termination (as Pt"fm) provided the coordinate transformation
termination scattering characteristics are known only over
that plane. In the case of a planar termination considered Xr,,,, = (x- mLz)cos -z sin 0,
here, the reciprocity integral is simply defined over the znn = (x - mL,) sin On + z cos On (4)
termination plane itself, and the scattering characteristics which shifts the mnth beam spatially by mL, in the x
of this termination are also known on that plane. A useful
property of this reciprocity integral method for calculating direction and rotates it angularly by th from the z axis.the fields scattered by the interior termination is that the The 2-D GB basis function used in this formulation (for

the iels sctteed y th inerir temintio is hatthe a typical beam propagating along the z axis) is a slightly
beams need to be tracked only "one way" from the open aotypica beam popagatuing ang is) is yI
end to the termination. Thus one can enhance the efficiency modified form of that used in (22] and is given by
of the axial GB tracking approximation by not requiring the 2jb Ibeams to be tracked an additional distance back again to B(x, z; b) = V +jbe-jk'e- -e-Fro. (5)
the aperture at the open end from where they radiate into +
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Fig. 3. 2-D open-ended cavity geometry illuminated by a plane -

wave.

Upon replacing x and z in (5) by x,,,, and zm.. of (4), one 1/0 BOUNDRY
obtains B(.m., zmn; b) in the expansion of (3). R(z) in (5) p ,, -18.21

is the usual phase front radius of curvature given by

R(z) = 1(z2 + b2) (6) Z

and w(z) is one-half the I/e beam width or "spot size"
given by -2o- -5 --

F(z) = + 62) (7) Fig. 4. Two GB's shaded within their l/e amplitude boundaries.

(a) b = rA, narrow waist, wide angular beam width (divergent). (b)
where b is a positive real constant which will be referred b = 4rA, wide waist, narrow angular beam width (well focussed).
to here as the beam parameter. k is the free space wave-
number (k = 2wr/A), and the beam basis function of (5) is This quantity is sometimes referred to as the beam diver-
normalized such that B(O, 0; b) = 1. It is seen from (5) that gence angle, as in [22].
a GB has a Gaussian amplitude transverse to the beam axis Figure 4 shows two typical GB's with different beam
(z axis) for a given z, with the l/e boundaries occurring parameters illustrating the effect of b on the beam waist
at x = ±w(z). The beam waist is defined as the l/e width and the angular beam width. The GB depicted in Fig. 4(a)
or "spot size" of the beam at its narrowest point, i.e., at is not well focused as compared to the one in Fig. 4(b)
z = 0, and is given by which is relatively well focused. The reader is referred to

the introduction for the physical reasons that influence the

w= 2w() = 2 (8) choice of initial launch parameters for the well-focused
V V beams used in the axial tracking approximation, and the

It is noted that this 2-D GB basis function can also be de- various trade-offs that must be considered when using this
rived as the paraxial solution of the wave equation for a line approximation.

source located at the complex location (z', z') = (0, -jb) The beam expansion coefficients A,,,(Oi) in (3) are

[9]. Therefore, a GB independently satisfies Maxwell's found by discretizing the aperture into subapertures of
equations in the paraxial region, and for a well-focused width L1 which are centered at the array points mL.,

beam the fields are confined primarily to this region. and requiring that the set of angularly shifted (i.e., rotated)
The far field form of the GB basis function is obtained GB's launched radially from the center of each subaperture

by making the transformation to polar coordinates reproduce the far fields of that subaperture. The expansion
coefficients of the GB's for a given subaperture, as well as

z = psinO, z = pcosO (9) the constant interbeam spacing A9, are then found by point
matching the rotated GB's to the far field radiation pattern

and letting p approach infinity. In the paraxial region (i.e., of the subaperture from which the GB's a.e launched so that
for small values of 0) this yields the subaperture pattern can be adequately reproduced by the

beam expansion. Such a procedure for finding the expansion
B(p, 9; b) = v•j-e jkbe 2 . (10) coefficients from the far field information appears to be far

simpler than finding them directly from the field distribution
Notice from this result that in the far field a GB is also in the aperture because the rotated beams of a particular
Gaussian in angle (in the paraxial region), and that it subaperture are distinctly separated in angle in the far field,
propagates with a cylindrical spread factor. The angular whereas they are superimposed on top of each other in the
beam width is defined as the 1/e beam width of the far spatial subaperture interval.
field basis function and is given by The field radiated in the far zone of the mth subaperture

is expressed as a sum of the angularly rotated GB's of the
F2,1. (11) ruth subaperture using the far field beam function of (10),o= b" i.e.,
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Um-pG) = necessary to require that the initial beam waist is larger than
U,(P, = A () eA kb(() 0) 2  (12) approximately four wavelengths. The limits on the beam

waist are then expressed by

where (p, 0) are the polar coordinates of the mth subaper- 1
ture, with p being the distance from the phase center of 2
the mth subaperture to the far field and 0 measured from If the inequality of (17) allows, a good choice of w. is
nth GB is launched. The expansion of (12) is truncated between one-third and one-half the aperture width d.

If the far field expansion of (12) adequately reproduces
at some angle ±0m,.z which is close to but less than 900, the far field patterns of each subaperture given by (13), thenso that -0ma. _< On _ 0..ax. The field radiated by the mth the superposition of all the GB's of all the subapertures

subaperture which is illuminated by a plane wave incident should adequately reconstruct the incident plane wave field
from the direction 6, with amplitude Ui is found via the in the aperture. Figure 5 compares the incident plane wave
Kirchhoff approximation as follows: field in the aperture of a cavity with its GB expansion of

e jkp (3), using the guidelines of (14) thru (17). As the figure
U (p, 6) = fm (0, 6,) shows, the GB's reproduce the aperture field quite well,

n7~ considering that these fields are abruptly truncated by the
fm(O, 6) = Ut / e-jkmL sin0 Lx (cosO + Cos 6,) Kirchhoff approximation.

6sn L-(i - sin 6.)] (13) 111. GAUSSIAN BEAM AXIAL TRAcKING APPROXIMATIONI
L2z The GB's in the expansion of (3) are tracked within the

where sinc(u) = (sin u)/u. Amn,, L,, b, and AO should be cavity to the termination via multiple reflections from the
chosen so that the expansion of (12) adequately reproduces interior walls using axial approximacin thi roximtion it

(13) using beams which satisfy the physical constraints of of a beam from a curved surface. In this approximation it

the problem considered here. While there is considerable is assumed that a GB incident on a curved surface gives

freedom in making these choices, the following procedure rise to a new reflected GB whose beam axis intersects the

has been found through experience to yield accurate results surface at the same point as the incident beam axis. The

with good efficiency. parameters of the reflected beam are related to those of the

For the expansion of (12) to adequately reproduce (13) incident beam by matching of the fields on the reflecting

via a point matching or "sampling" procedure, the function surface in the vicinity of the point where the beam axes

f(0, 6,) of (13) is assumed to be slowly varying with intersect. Referring to Fig. 6, the z' axis denotes the axis

respect to AO and that in the direction O,, only the nth and of the incident beam and the z axis denotes the axis of the

(n ± Ith beams of the mth subaperture are significant; all reflected beam; let the incident GB field U' in Fig. 6 be

other beams of the mth subaperture are negligible because represented as

of their Gaussian amplitude taper. Then it is reasonable U'(x', z') = UoB(x', z'; b') (18)
to make Am,(G,) proportional to fm(OG,,O). It has been
found using these assumptions, and through numerical and the reflected GB field Ut be represented as
experiment, that the following relationships used in the U'(x,z) = UoB(x,z;b) (19)
expansion of (12) adequately reproduce (13):

expansion o(2where U.' and U0 are constants and 3 is the GB basis
AO 2 log4 (14) function of (5) (note that the primed quantities refer to the

A b incident beam). In Fig. 6, p" and Pc are the distances from
Amn(Oi) = 1T(15) the waists of the incident and reflected GB's, respectively,

A 3 (O,90(1 to the point where the beam axes intersect the surface;

A0 < 5 (16) either quantity may be positive or negative depending on
3.5L, whether the beam is diverging or converging, respectively,

The inequality in (16) guarantees that at least 3.5 GB's will at the reflecting surface. R, is the radius of curvature
make up each lobe of the far field pattern fm(O, O6). of the surface, and 6, and 0, are the angles the incident

It still remains to find the beam parameter b, which then and reflected beam axes, respectively, measured from the

determines AO, Amn(Oi) and the subaperture size L, via surface normal; all of these quantities are defined at the

(14), (15), and (16), respectively. In practice, the beam point of reflection of the incident beam axis on the surface.

waist w, is chosen first to produce GB's which best fit the First, the incident and reflected GB's are matched exactly

particular geometry under consideration. The initial beam at the point where the beam axes intersect the surface. This

waist size then determines b through (8). In choosing w_ yields the relationship
it is best to require that the initial beam waist be less , '(pc +
than one-half the width d of the aperture. However, to U - I'(,)U e + jb j(pp,) (20)I
have beams which are initially relatively well focused, it is 0b((p+ jb')
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Fig. S. GB reconstruction of the aperture field due to plane wave incidence. u' = 7.5), 5
subapertures, L, = 2.98A,.%6 = 6.00, 0m,, = 600. - incident plane wave field, - - -. GB
recontruction. (a) Phase of the aperture field. (b) Magnitude of the aperture field.

where r(Oi) is the appropriate Fresnel plane wave reflection derived for the 3-D case which are also closely analogous
coefficient of the surface, evaluated for the axial incident to the laws of GO.
angle 0e. Next, the exponential portions of both the incident It is noted that matching higher order terms in the Taylor
and reflected beam basis functions are expanded in Taylor expansions gives results inconsistent with our prior assump-
series as a function of the distance along the surface from tion that an incident GB gives rise to a reflected GB at the
the point where the beam axes intersect. Matching the linear point where the axes intersect the surface. This is because
and quadratic terms of these two expansions yields realistically, an incident GB gives rise to a nonsymmetric

(1 reflected field which is only approximately a GB [14).. (21) However, for cases when the incident beam illuminates an

Pc + jb - 4 + jb' +Rc co " (22) area on the surface which is small with respect to the radius+of curvature at that point, our approximation is reasonable.

Notice that these expressions are similar to the laws of Therefore, the above expressions are valid as long as R,
geometrical optics governing ray reflection from a curved is much larger than the width of the incident beam where

surface, but with complex caustic locations. This is not it intersects the curved surface and as long as the beam
surprising considering that the incident 2-D GB can be does not come close to grazing the surface (i.e., for 0, notS thought of as the paraxial field of a line source moved into close to 900).

Scomplex spae by an amount Y. Similar expressions can be In general, the farther a GB propagates inside a cavity the
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where St is a conveniently located cross section inside the I
cavity near the termination, as shown in Fig. 7, and ft
is the unit surface normal of St pointing away from the

Fig. 6. Axial reflection of a GB from a curved surface. termination. To use (26), it is assumed that E. and H. are I
known by tracking the fields from dff' through the interior
of the cavity to St in the absence of the termination, and

more it diverges until it becomes too wide to fit inside the that Eb and H-I are known by tracking the fields Ef, Hf b
cavity, or too wide to satisfy the beam axial approximation. from djFb through the interior of the cavity to the termination
This tends to restrict the overall length of cavities for and tracking them back to St after being scattered by the
which the GB shooting method can be applied within termination.
the axial tracking approximation. The method works best Finding the interior scattered field at S, can be very I
for electrically large cavities because the beams stay well difficult for an arbitrary termination; some procedures for
focused. An approximate limit on the length L of a cavity accomplishing this are currently under study and will
of width d for which the GB shooting method with axial be reported separately in the future. In the numerical
tracking can be applied has been obtained through analysis results presented in this paper, a simple planar perfectly
and numerical experimentation as conducting termination is employed. It is noted that (26)

L < 0.2d 2/\. (23) intrinsically includes all the multiple interactions between
the termination and the open end of the cavity. However,
these multiple wave interactions are ignored for the reasons

IV. TERMINATION RECIPROCITY INTEGRAL FORMULATION given earlier in the introduction.

Once the fields inside a duct have been tracked to the For the case of plane wave illumination, far field scatter- I
vicinity of the termination via GB shooting or some other ing, and a planar termination of width I which is normal to
appropriate method, the termination reciprocity integral can the z axis, it is straightforward to show that (26) reduces
be used to find the cavity scattered fields. This integral is to the following expression for the 2-D case:
derived in [21] and [2] and will be described briefly in this
section.

Consider the 3-D cavity geometry with an arbitrary 1 e-jkU:Q Us_)
termination as shown in Fig. 7. This cavity is illuminated by U'J)= U 1 - Z
two infinitesimal dipole sources df, and dfb located at Q.
and Qb, respectively. Let the total fields due to d#. and dgb (27)
radiating in the presence of the cavity and its termination be Iw
denoted by A.1 A,. and 4b, Il6, respectively. These fields where U•(Q 0 ) is the bistatic scattered field in the direction
can be decomposed as of Q. at a far field distance of p from the open end of

the cavity, due to a plane wave of amplitude UW incident
f. = P, + f A. = A,+ fi (24) from the direction of Qb. The integration in (27) is over the I
Rb = fi + fs ;/b, = fII + J (25) termination boundary. U.' in the integrand of (27) is found

by launching GB's which are excited by the field incident at
where ( 17,i-) and (f,/0) are the fields due to d&f8 and the open end from Q., and tracking them through the cavity I
dfb, respectively, in the presence of the cavity but with the interior to St. The GB launching expansion is given in (3).
termination removed (or absent), so ( 1, 7.) and (f, l) Similarly, U6 in the integrand of (27) is found by launching
are the fields due to djY. and djb, respectively, whiclE are the GB's excited by the field incident at the open end from
scattered by the termination. The termination reciprcity Qb, and tracking them through the cavity to the termination
integral is then stated as follows: and reflecting them back to the termination boundary St.

For the case when St lies directly on a planar termination,
' )• =J L. (#: × fI• - , × ) I . dS (26) Ub can be easily found from Ub by using the boundary

S9xconditions on the termination surface.
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V. RESULTS AND CONCLUSIONS

blThe numerical results presented here are for the case of
backscatter from 2-D open waveguide cavity geometries ,
which are made up of straight and annular perfectly con- 0
ducting waveguide sections and are terminated by a planar
perfect conductor. An independent hybrid modal reference

solution as well as a ray shooting (SBR) solution [1], [2)
is available for these types of geometries. The numerical g'
results include the external scattering by the edges at the
open end along with the internal cavity scattering. No other e.
external scattering effects are considered. Furthermore, the z "
multiple interactions between the open end and the ter- .
mination are neglected for reasons mentioned earlier. The
numerical results are presented as echo width in decibels
(dB) relative to a wavelength versus incidence angle. The _ _ _ _

2-D echo width is defined by 
U 34..1

lim 27rp U:(Q)12  INCIDENCE ANGLE (DEGREES)

P= 1U1 2 (28) (a)

where Ub(Q.) is calculated from (27) for the case of a V
perfectly conducting planar termination coinciding with the

i plane of integration, and for scattering in the direction of the -

incident plane wave (backscatter). For the results obtained La
.Jhere via GB shooting, the initial beam waist w, is specified ,N,

first to launch GB's which fit well within the open end of the '
cavity, and the initial beam parameter b is found from (8)
which then determines A8 from (14). The subaperture size 1 I'
cv is chosen to be as large as possible under the constraint (8)

* of (16).
Figure 8 compares the backscatter patterns of a straight o

cavity calculated using three different methods. The GB,,
result compares quite well with the hybrid modal reference
solution, whereas the ray shooting (SBR) result predicts the oilIt " a 30. " - & '
overall trends in the pattern but misses some of the details. INCIDENCE ANGLE (DEGREES)

The inaccuracy of the SBR result is due to exclusion of the (b)
fields coupled into the cavity via diffraction of the incident Fig. 8. Backscatter patterns of a parallel-plate cavity.
plane wave by the leading edges; on the other hand, the hybrid modal reference solution. -.... GB shooting method,
subaperture expansion used in the GB shooting method u.: = 7.5A, L, = 2.98, 09,, = 750, - - - SBR ray

shooting method, 200 ray-tubes/angle. (a) TMA, polarization. (b)
implicitly includes the effects of these fields to within the TE, polarization.Kirchhoff approximation. A total of 125 GB's were tracked

just once, independent of incidence angle, to obtain the The reason that the GB results in Fig. 8 are somewhat
results of Fig. 8. In contrast, the SBR method required one better than those in Fig. 9 is because the curved walls of the
to track 200 rays for each incidence angle at one degree in- double-bend geometry in the latter case cause the beams to
crements, so a total of 12 000 rays were tracked! Of course, diverge and distort after reflection, introducing small errors
the number of GO rays tracked would be reduced if the in the axial beam tracking approximation. The farther a
backscatter was calculated at larger increments of the inci- beam propagates inside a cavity with curved walls, the more
deuce angle, thus sacrificing some continuity in the pattern. these errors accumulate. This is what limits the length to

Figure 9 shows the backscatter patterns of a relatively pproximately .2d2 /A as in (23). For an aperture wdth of
short double-bend S-shaped cavity. The two GB shooting
solutions, which use different initial beam parameters, agree 10 sho the limi tthe length is approximately 45A. Figure
well with each other as well as with the reference solution. 10 shows the backscatter paterns of a double-bend cavity
It should be mentioned here that in realistic scattered which is longer than this limli. The agreement is still good,

field calculations, a result which is accurate to within 3-5 but this may not always be the case as the pattern of Fig.
dB is usually considered a good approximation for most 11(a) pertains to a double-beid cavity of the same axial
practical pmwpses, particularly in the vicinity of the peaks length but with a somewhat different geometry. However,
of the scattering pattern. The results of Fig. 9 support the as Fig. 11(b) shows, the agreement improves when the
capabilities of the GB method for practical applications, frequency is doubled. It is noted that the straight cavities
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INCIDENCE ANGLE (DEGREES) INCIDENCE ANGLE (DEGREES)

(a) (a)

II

11 a I" L

S!' I

INCIDENCE ANGLE (DEGREES) INCIDENCE ANGLE (DEGREES)

(b) (b)

FIg. 9. Backscatter patterns of a short double-bend S-shaped Fig. 10. Backscatter patterns of a long double-bend S-shaped cavity.
cavity. i hybrid modal reference solution - G- - - -G, hybrid modal referene solution 2 -, - - - GB shooting method,
shooting method, w o= d7.5A, L. = 2.98, re e = 60, -o - wlo= -7.5A, Lh 2.98, reeec = 60l , -t - - GB shooting method,
- GB shooting method, Uw, = 5.OA, L. = 1.66, Gmoz = 600. w, = 5.OA, L1 . 1.66, 69-., = 600. (a) T,,f polarization. (b) TEW,
(a)TMA, polarization. (b) TEv polarization, polarization.

which can be analyzed using the GB shooting method can approximation is replaced by the more accurate procedure
be longer than the limit given in (23), as in the case of Fig. for tracking beams via complex rays, but that would be done
8, because the flat walls do not cause errors to accumulate. with much less efficiency. Finally, the termination reci-

It has been shown that the GB shooting method can procity integral emiployed here allows the external scattered
be useful in predicting the electromagnetic coupling into fields to be found in terms of the fields tracked one-way
and scattering by large open-ended nonuniform waveguide from the open end of the cavity to the interior termination, I
cavities with smooth, slowly varying interior walls for and allows the cavities to have arbitrary terminations as
which the axial beam tracking approximation employed long as the local internal reflection characteristics of such

here remains applicable. This method therefore works well terminations are known. I
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Angle Estimation Using a Polarization Sensitive IH. PRoBLEM FORMUtATION

Array Consider a 2L-element array consisting of L pairs of crossed

Jian Li and R. T. Compton, Jr. dipoles, as shown in Fig. 1. Each dipole in the array is a short
dipole, so the nutput voltage from each dipole is proportional to the

Abrt- a previous paper, the authors descrd bw t electric field component along that dipole. The signal from each
ESPRIT algorith may be uaed to estimate both the arrival directions dipole is to be processed separately by the estimator. The Ith dipole
Mad the polaruzation of Wooml plane waves with a aniform Uaw pair, I= 1, 2,.., L, has its center on the y-axis at y (I-]).
army of erossed dipoles. An alteraative approach Is described here that The distance 6 between two adjacent dipole pairs is assumed to be a
my be ued with the same array to estimate arrival asnles o03y. This half-wavelength to avoid angle ambiguity problems.
mew approach has the advaetaite that it rneuires far fewer computations. Suppose K (with K < L) continuous wave (CW) signals impinge
The performaaee of this approach Is compared with that of the orgual te
appWoach and with that of estmators shnq conventional ESPRIT on the array from angular directions 9, in the yz-plane, where 9
arrays, denotes the polar angle in the yz-plane as shown in Fig. 1 and

I. ITODUCTION k = 1, 2,' .. , K. The electric field for signal k is given by

In a previous paper [11, the authors described how the ESPRIT Ek= + C.0,J Otw- ,.k,+ 40,(
algorithm (2] can be used to estimate both the arrival directions and
the polarizations of incoming plane waves with a uniform linear where E,. and E#. are the electric field components in the -x and
"array of crossed dipoles. The ESPRIT algorithm exploits the invari- 9t directions, respectively, and e, and e#, denote unit vectors in the
ance properties of such an array so that both angle and polarization x- and 0t-directions. kI is the propagation vector for signal k,
estimates can be obtained. given by kk =- -koe,,, where ko is the free-space propagation

In some applications, however, one may be interested in estimat- constant and e,,r is a unit vector pointing outward along the radial
iag only the signal directions, but not the polarizations. The purpose direction defined by angle 9,. (In (1), the minus sign on E,, is
of this communication is to show how the approach in [!] can be included because -ee . and -e'h. in that order, form a right-
simplified when polarization estimates are not needed. The simpli- handed coordinate system for an incoming signal.) The vector r in

ckation consists of averaging the two covariance matrices associated (1) is a vector from the coordinate origin to a point in space where
with two orthogonal polarizations. We compare the performance of the field is measured. Finally, w is the frequency and J,, the carrier
ds approach with that of the earlier approach in [1] and also with phase angle of signal k. Ok is assumed to be a random variable
thAt of a conventional ESPRIT estimator that does not take polarize- uniformly distributed on [0, 2w), and the k, for different signals
tdn into account. are assumed statistically independent of each other.

blauscript received December 17, 1990; revised June 24, 1991. We assume each signal has an arbitrary electromagnetic polariza-
This work was in by die Joint Services Electro•ics Pro-pam under Cnact NO01-9-007 with he Ohio State University tion [31. To specify the signal polarizations, we let a, and Ot

Research Foundation, denote the ellipticity angle and the orientation angle, respectively, of
J. LI wa with the Department of Electrical Engineering, The Ohio State the polarization ellipse produced by E.. and 4, for signal k, as

University, Cumbus, OH. She is now with the Deparmunt of Electricl shown in Fig. 2. The angle 0,, is measured with respect to theIn.eern. Uaverusity of Kentucky, Lexingtoa, KY 40506. -x-direction. To eliminate ambiguities, Ok is defined to be in the

Ohio tleUaiveniyColumbus, OH 43210. range 0 s 0, < w. and a1 is always in the range -w/4 : at 5
U Log Number 9102628. w/4 [3).

0018-926X/91$01.00 01991 EEE
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Z zi(t) is given by3
x

z,( E vtsjI()q'.7' + al(t), 1 1,,- (10)
k-I

Si nlw eesn'tCos 
a (11

u*~u [srncos.*i& "'

and
y 2ri

where X is the wavelength~.hJb(2
Let z(f), s(t), and a(l) be column vectors containing the received

signals, incident signals, and noise, respectively, i.e.,

[ ~) Z2(t) 1 [~) s20s)] [2(t)13

Fig. 1. A uniformn linear array of crossed dipoles. ' I "- * us).

IZ L(t). [x(t) J ML(t) j
(13)

The received signal vector may then be written

z(t) - As(s) + u(s), (14)
where Ais the 2L x K matrix

A-[a 2 -Sid (15)3

whose columns are given by

Fig.2. Plariatio ellpse.We assume that the element sigals are sampled at N distinct
times tn. 1. 2,-- , N.The problem ofinterest isto determine

In terms of ak and O, the field components E., and El a the angles Ot, k - 1, 2, - , K, from the measurements x(t.),I
given by n - 1, 2. -,(2)

E- si tk, (3) both the arrival directions and the polarizations of the incoming
plane waves. In this communication, we consider the case where we

where Ek is the amplitude anid 5k and '1k are related to ak and Ok are interested in estimating the signal directions only. We describe
by below a simple approach that may be used when polarization

cos 27k cos 2 ak cos 2 O, (4) estimates are not needed.I
tan tan2 a csc2 Ok(5) To distinguish between these two approaches, we shall refer to

tafl~ -tan~kcs~ak.(5) the earlier approach in [ 11 as the full polarization method. The
(A proof of the relations in (3)-(5) can be fouind in 141.) By simplified approach described here will be called the angle-onlyI
combining (l)-(5), the electric field for signal k may be written mlethod.

-k- Ek-COS7aes + sin e~haI t (6) Mn. THE SDPLUFU APM£Aas

-Sk(t)rC0870. + 5iaII7 &t""C~j e-J'** (7) The central idea of the angle-only method is to consider theI
+ x-axis dipoles and the y-axis dipoles as separate suberrays. The

whene st(t) is the fth incident signal, average of the covariance matrices for the x- and y-axis subramys

St)- EaCI(hih*). () is then used in the ESPRIT algorithm instead of the ful covariance
matrix of the crossed dipole arry. The signal directions are esti-For the Ida dipole pair, let x(5) be the signal received from the mate from the averaged x- and y-awi covariance matrices.

x-anis dipole, and y1(f) the signal received fromh the y-xsdpl. Specifically, let x(t) denote the column vector of signals received
Then die total signal vecto z,(I) received by the Ith dipole Pa is on the x-axis dipoles, i.e.,

21(t) _ [x,(s) y,(t)It, (9) i(s) - [Xe(t) X2(t) ... XL(t)T (17)
uWre (.)T denotes the tranpo. Assumne tha, in addition to di Note that a(t) is the sUbvector of a(s) consisting of the odd.
received signals, zx(5) contains a thermal noise voltage vector numbered elements of s(s). LMt a,(' be at vector containing the
24') u [01.1 ) ,()J.The mi(t) ame assumed to be wro meanl1 corresponding noise voltages,
coniplex Gomssian processes staistically independent of each other, )with Covarlance 021, where I denotes the identity matrix. Then *()-[n()'~() ML()]. ()
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:1(t) is a zero-mean complex Gaussian process with covariance the corresponding orthonormal eigenvectors. The columns in E, =
621. Then z(t) can be written [R 12 ... I.1 are referred to as signal subspace eigenvectors.

Z (,) - XLs(,) + -,(0), (19) They span the same signal subspace as the direction vectors in AL.
"a -)Let +,( and t E o2 be the (L - l) x K submatrices of E, consisting

where A•L is the direction matrix of the first and the last L - I rows of E,, respectively. Then the
columns in E•, and Eq2 span the same subspace as the columns in[ ~~A 1 I A.. and AL -I3.. respectively, where

_ q q 2  "'" q
L . •.. • , (20) * -diag {q,, q2 -,--..q). (32)

q;_ I 2L - I ... ;-I As shown in [2], the diagonal elements of f. are the eigenvalues of

the unique matrix t. that satisfiesm ad 4). is defined as

*x- ads{ -C051,, - C0S1 2 ,"', -, OC K). (21) Eq2 - RqI. (33)

The covariance matrix of x(t) is given by From the diagonal elements of 0., the signal directions 0, can be
computed from (12).

R. - E{x(f)i"(t)} - ILOX L 0,4R,# + U21. (22) The approach described above is computationally simpler than thefull polarization method in (I). because it requires the eigendecom-
Similarly, let y(t) denote the column vector of signals received on position of only the L x L matrix R in (28). The full polarization

the y-axis dipoles, i.e., method requires the eigendecomposition of R = E(z(t)zH(t)),

r[. which is 2L x 2L 11]. Hence the new approach requires approxi-
Sy(t) - [yI(,) Y2(1)... (23) mately one eighth as many computations [6].

If the ideal array covariance matrix in (28) were known, the
y(e) is the subvector of z() consisting of the even-numbered signal directions could be calculated exactly with ESPRIT. In
elements of z(t). y(t) can be written practical situations, however, only a finite number of noisy mea-

y(t) - 1A0,s(t) + G,(t) (24) surements are taken at the dipole outputs, and the estimates of the

where signal directions must be made from the available mea-urements.
Also, the number of incident signals is unknown and must be

*,= -diag {-sin,- Icos ,ei",,- sin -2os*2 e .... , estimated. The minimum description length (MDL) criterion de-
( cribed by Wax and Kailath [71 can be used to estimate the number

- sin-,k cos ~ e'}, (25) of incident signals, and the total least squares (ItS) ESPRrr
and algorithm 121, [8) can be used to estimae fo. The steps in this

[n,(,) [n,, n,(t) ... ,.L()] T (26) process ae as follows.
1) Compute

M,(t) is also a zero-mean complex Gaussian process with covari-
8ace •21. The covariance matrix of y(t) is R - -= - E)+ y(t.)yN(t,)]. (34)

3 W, E{y(,)y,(t)) - AJOJ,#rAH +. 2 1. (27)
where N denotes the number of measurements.

Next let I be the average of R. and R,, 2) Compute the eigenvalues & a X a ... t AL of R.
1 3) Estimate the number of incident signals K using the MDL

" (R + R,). (28) criterion. The MDL estimate K of the number of signals is the
c value of K e (0, 1,'" ", L - 1) that minimizes the following MDL
ci be writen fnction (7]:

I - L + A .(29) , ,/ (L-K)N

who !.is MDL(K) - - Iog flK.x+ ,I
Re , , . (1 +IK(2L-K)logN. (35)

S iace the incident signals m uncorrelated, R, is nonsingular. As 4) Obtain E, whose columns are h genvectors of R that

M n non of the incident signals produces a zero output on both correspond t the K largest eigenvalues of it.
do x- id y-axis dipoles at the same time, If, J O,] is of rank K. 5) Form !,, atd X12 from FE, in the same way that E,, and
Then A. is also nosiagular. are formed from E,

To apply th ESPRIf algorithm [21, [5] to 1, the direction matrix 6) Calculate the TLS solution I, from E., and E, 2 .
IL mW be of full column rank. Therefore the angles of arrival 7) Cojppute #,, k -I, 2.-., K, by determining the eigenval-
mmst be disninct so that the columns of XL define a K-dimensional ues of f,.
snalpa _abapece i an L-domn onal space. 8) Calculate the direction estimates from

Prom 1, the alfp directions may be calculated as follows (2],,- k 2 ge..g 2 > 2=...
(s•. Los &.+m a,(,)- at k -l,2,'." k. (36)
62 be the eiipevalues of , aId I,,I, ",tI,, .'", be 2r 6
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IV. SimuLA.'oN RESULTS 10

We show below several examples that compare the performance %
of this estimator with that of the full polarization method in (1]. We
also compare this estimator with ESPRIT estimators using only the
x- or y-axis dipoles (i.e., a conventional ESPRIT array). j

The results below are for an array with L = five pairs of crossed
dipoles with a spacing 6 between adjacent dipole pairs of a half- 10.
wavelength. All incident signals are assumed to have the same unit
amplitude Ek. The signal-to-noise ratio (SNR) used in the simula-

tions (-10 logo 0 a 2 dB) is 20 dB. The number of data samples I .

taken at each dipole output is N = 31, and 50 Monte Carlo

simulations were'done for each case. .5
We begin with the case of a single linearly polarized signal

(or = 0"). Fig. 3 shows the variance (in decibels with respect to 20 40 60 S0 10 120 140 160 IS0

degrees squared) of the direction estimate i as a function of 0 when A wPvm)
0 = 20". Four curves are shown, one for tl*e full polarization Fig. 3. Variance of 9 versus 0 for a linearly polarized signal (a = 0"),
method of 11], one for the angle-only method discussed above, and 9 - 20". Solid curve: full polarization method and angle-only method (the I
two for conventional ESPRIT estimators using only the x-dipoles or two curves are virtually the same for this case); dotted curve: x-axis dipoles

y-dipoles. Note that the performance of the angle-only method is only; dashdot curve: y-axis dipoles only.

almost the same as that of the full polarization method and is not
sensitive to 8. The performance of the conventional ESPRIT estima- 10
tors using only the x- or y-axis dipoles, however, is sensitive to 8.
For example, when only the x-axis dipoles are used, the angle s"
estimates deteriorate rapidly as 8 approaches 90" (as the signal I
becomes vertically polarized). Of course, the reason is that the o-

signals on the x-axis dipoles approach zero as 8 approaches 90". It -s5
is thus an advantage to use an array with elements responding to
more than one polarization. -10

Fig. 4 shows another example of a single signal with 8 = 0O and is -1
* = 20". Fig. 4 shows the variance of the direction estimates as a
function of the ellipticity angle a. Note again that performance of 1 -20 I
the angle-only method is almost the same as that of the full >
polarization method and is not sensitive to a. The performance of a 25
conventional ESPRIT estimator using the x-axis dipoles is also not _"-_ Z 1-o ._ 0 -10 0 10 20 30 40 50

very sensitive to a, because the signals on the x-axis dipoles are
never close to zero for any a. For an ESPRIT estimator using the a (de,,m)

y-axis dipoles, however, the variance blows up when the polariza- Fig. 4. Variance of 9 versus elliptcity a for 0 = 0%, 9 20. Solid
tion approaches linear (near a = 0"). curve: full polarization method and angle-only method (the two curves are

Next we consider a case where two signals arrive from 0, = 20" virtually the same for this case); dotted curve: x-axis dipoles only; dashdot I
and 02 = 20" + AO, so A$ is the angular separation between th curve: y-axis dipoles only.

two signals. We assume the corresponding ellipticity angles are
a, - 45" and a 2 = 45" - Aa and the orientation angles are 8, the angle estimate for signal 2 can cause the two estimated angles to
02 = 0, so Aa is the only difference in polarization between the be assigned incorrectly to 0I n 02. The result is a large increase

two signals. Fig. 5 shows the variance of 0 I as a function of Act for in the computed variance of 0,.
two values of A8. The variance is obtained by taking the smaller of Finally, we remark that the above results were obtined by
the two angle estimates as 0,. assuming that the number of incident signals K is known. We I

Note that the performance of the angle-only approach is not found, however, that the MDL criterion provided accurate estimates
sensitive to &a, but the performance of the full polarization ap- of K for both the angle-only method and the full polarization
proach is. For small AO and large Aca, the full polarization method method in all simulations. For a conventional ESPRIT esLmator
yields better performance than the angle-only method. For large A# using only the x- or y-axis dipoles, however, estimates of K can beI
or small A a, the two methods yield similar performance. The wrong for certain signal polarizations.

poorer performance of the anVe-only method when AG is small and

A is large occurs because A,, in (20) is ill-conditioned but A in V. CONCLUSON
(1S) is not. The ill-conditioned AL makes it hard to resolve the I
columns of AL and thus to resolve the two closely spaced direc- In a previous paper [11, we described how the ESPRIT algorithm

tions. can be used to estimate both the arrival directions and the polariza-
Note also from Fig. 5 that for a conventional ESPRIT estimator tions of incoming plane waves with a uniform linear array of

using the y-axis dipoles, the variance of 01 increases as Aa crossed dipoles. In this communication, we have described a sime-
approaches 45 (linear polarization) even though Aa affects only pier alternative approach that can be used to estimate only the
the polarization of the signal from 02. The reason is that as 'A* arrival directions. This new approach requires approximately one
approaches 45, the signals on the y-axis dipoles due to signal 2 go eighth as many computations as the earlier method (the full polariza- I
to zero, so the estimates of 02 become very poor. Because the tion method). Simulation results show that the full polarization
smaller of the two estimated angles is taken to be 0 1, a large error in method yields better direction estimates than this new approach if
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I . ,.the difference in the signal directions is small, but the difference in

:.... .the polarizations is large. Otherwise, the two approaches have

Ij~sprfrnne
. ........... .............................I ~ 0 20 30 4 50 0 70 80 .

* (a)

20 . ... .... ...

(1 .UadlI.25-,kAl n alszto stmto sn

3. [21) R Uo and PT. KailathJr, "AgeSPI polarization of igdna p usinger

3 ~via rotationa] invariance technkiqes." IEEE Trans. Acoustics,

J.2D a plane electromagnetic wave," 14cc. IRE, vol. 39, pp. 540-544,

(61 . H Goub nd . F V.Lmn MarixComputations. BliU0 10 20 30 40 50 W 70 SO 0 moe D on okn nvriy 1989.
AU (deu'e) M7 M.Wxn .Kiah Detection of signals by information theo-

(b)retic criteria," LEEAi.Acoust. Speech, Signal Processing.

Fig. S. Variance of i versus Aor. Solid am:full polarizatioO method; (81 0. HI. Golub and C. F. V. Loan, "An analysis of the tota leastI aded curve: angle-aily method; dtecuv:x-axis dipoles only; dashdot squares problem," SIAM)J. Numerical Analysis, vol. 17. pp.
curv: y-axis dipoles only. (a) At 40.(b) A9 20'. 883-893, Dec. 1980.
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A Microstrip Line on a Chiral Substrate Y(/o, fo)

Michael S. Kluskens and Edward H. Newman A XJ(x) eJkz

A -staa -Right and l ircular vector potentials ae developed and As Et. a

used in a spectral-domaim solution for a microstrip transmission line On x
a chimrl substrate. These vector potentials have properties similar to P
these et the usual magnetic and electric vector potentials, emcept that Z :"C
dtey result I circular rather than Hoerly polarized ieds, thereby Fig. 1. Microstrip line on a grounded chiral substrate.
shPiaumg Geld expansions in chiral media. The chiral microstrip lFne
doenot mhave bifturated modes like other chiral guided wave structures;
however, the chiral substrate causes • skofficant asymmetry in both the
Diew ads currents. II. THEORty

The constitutive relationships for a chiral medium can be
written as

B - jtH + j~tE (2)

Swhere e, -e + ;2, I is the permeability, e is the permittivity,
and the pseudoscalar f, is the chirality admittance of the

1.Im~c0 medium Wet').3 1. INTRODUCION Following the techniques used in [71, [81, the right (R) and left

This paper presents a spectral-domain Galerkin moment (L) circular vector potentials are defined as
method (MM) solution for a microstrip transmission line on a R - ,*(kR) (3)
chiral substrate. A chiral medium is a form of artificial dielectric L -h*(k1) (4)
consisting of chiral objects randomly embedded in a dielectric or
other Inedium [1]. At optical frequencies, the chiral objects are where h is an arbitrary unit vector and 0,(k) is a solution of the

molecules and the medium is called an isotropic optically active scalar wave equation V2*r(k)+ k 2*(k)- 0. The right and left
medium. At microwave frequencies, early research used con- circularly polarized electric fields are formed using
ducting helices as a scale model for optical activity [2). From this

and later work, the constitutive relationships for chiral media ER,-Vx R+ 7-VxRR (5)
have been shown to be the same as those for isotropic optically kit

* active media; therefore, the same notation is used [3, sec. 8.31. EL-V x L--1VxL (6)
A chiral medium is distinguished from other media in that (L

right and left circularly polarized waves propagate through it
with different phase velocities, even though it is a reciprocal and where the wave numbers kR and kL are given by
isotropic medium. For most chiral guided wave structures this
property results in bifurcated modes [4]-[61, i.e., pairs of modes kL(7)

with the same cutoff frequency. The chiral microstrip line does The corresponding magnetic fields are given by
not have bifurcated modes, and thus the dispersion curves are
single valued. The primary effect of the chiral substrate is to (HR) '(ER (8)
generate asymmetric longitudinal and symmetric transverse HL - _EL(
fields. This effect could significantly alter the properties of where n, - is the chiral wave impedance. The right (or
microwave devices constructed on a chiral substrate. left) circular vector potential component R. (or Ld) produces a

right (or left) circular to y field RCy (or LCy), just as the
magnetic vector potential component Ay produces a transverse
magnetic to y field TM,.

The microstrip line is shown in Fig. 1, where the substrate has
parameters (isE,4) and thickness T. The microstrip line is W
wide, infinitely thin, and perfectly conducting with a current

distribution of J(x)e-J1k-. The region y > T is free space, with
parameters (o 0 ,e0 ) and wave number ko-w~o E. In this

region the fields may be expanded as the sum of TM, field and
a TEy field using

Manuscript received March 1, 1991; revised July 8, 1991. This work (A) Y' A - (9)
was sponsored by the Joint Service Electronics Program under Contract F) rjj•/A ] " (9)

* N00014-7&C-0049 with the Ohio State University Research Foundation.
""The authors are with the Department of Electrical Engineering, The where k2 - k + k - k0.

Ohio State University, ElectroScience Laboratory, 1320 Kinnear Road, In the substrate, the fields are expanded in terms of right and
Columbus, OH 43212. left circular vector potentials. Individually, right or left circularly3 IEEE LoA Number 9102813. polarized fields can not satisfy the boundary condition of zero

0018-9480/91S01.00 01991 IEEE
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tangential electric field on the ground plane at y - T. However, generated by the surface current Jz(x) is given by
this boundary condition can be satisfied by a quasi-TMy field I----J I
formed as the sum of a RCy field and a LCy field generated by EJ-(x) -- ,E1=(k,) + E9J.(k, ) ]
the circular vector potentials [8]:

R.M . cosIk.'RYo-j(kxkz)dk, *i.(k,)e-j(kx+ktz)dkz. (22)
L. y .- 2r fPM cos k,.,y ) e (10) In a conventional achiral microstrip line E:' , E"0 , and

k2 jt-k2+r2- k a--CV 1e -kLY) E k. are zero, causing J,(x) and J,(x) to be even and odd

where X and k YL X + - kL. The re- functions of x, respectively. However, this is not true for a chiral
suiting field is TMi if f, -0; hence the name quasi-TMr. microstrip line, thereby requiring a set of even and odd basis
Similarly, a quasi-TEy field can be formed using functions.

R-- sin ky,.Y 111. MOMENT METHOD SOLUTION
( _._, 2 k," i k~L( The J, and J, currents for the MM solution are expanded as

T sin ky..L Y
.,L JA(X) - . 1.,.J,1.(x) (23)

ITe four unknown spectral functions A, F, QM, and QE are A0

determined by enforcing the boundary conditions at y - T [8). N,

The fields E, and E, at the interface y - T are presented J1(x) - E l.Jz,.(x) (24)
below in terms of the even and odd components of the Fourier R-0

transforms of these fields generated by 2 and i polarized where 1,,. and !,, are the unknown coefficients. The basis I
traveling wave line sources at x - 0, y - T: functions J•, and J,,. are Chebyshev polynomials weighted by

k k2 the edge conditions [91-[131:

X:Lp k Lo k ] 1 ( Z IJ J.,,,(x) - -l+ l-(2x/W) (25)

(12) = 2 I .

. k-Leo + k2 k, _ J V+kU)] J,.,(x)-7T,,(2x/W)/rl -C2x/W) (26)

x • ky -0 ]C 1 where T.(x) and U.(x) are Chebyshev polynomials of the first
(13) and second kinds, respectively. The Fourier transforms of these

.kk:[k, oe0 basis functions are (14, sec. 6.671]:
E * ° " E• ° = - -f " • o - - y (I - S ) + '• (V - U ) ". + 1+ (k .W /2)a (14) J2.O(k)J- J" k W/2 (27)

Sf2k~k2  (),,.(k.) j-J.(k.W12) (28) 3
-o -E --zo J v 71,A (15) where J,,(x) is an nth-order Bessel function. The MM can theui

be applied to enforce the boundary condition of zero tangential

k 2 -k 2  electric field on the microstrip line. In block matrix form, the IB
where -j Z G (16) MM equation is Z-Z [j[j(9wheze. Z . [I[1 (

A (k2 + k2) + S)- °(1- S)l where 1,A0 [I,..."I.TNIand/1, o...1, N' tP'O JIn the xz block[k..o k,,.. 1'l r zZo~o, ... z(.o.N)
+ LL + L- L, V (17) ! . . Nlo

1kjs k2 0  )ZZZ- (30)
G* -= I -- :-•-L -- = sin k,.Tsin ,.LT (18) [Zi(N.,O) ZZZ(N. NI)]

2 ( k", L k -, kR L k i a'
s s-) z .)- - . (.)k .. (k.).,(-k,)dk. (31)

S-cos kyRjT cos k,.LT - G+(19) XZMn - '!
k),cJs Impedance elements in the remaining blocks are given similarly.

ck, TThe propagation constants of the modes are found as the

roots of the determinant of the impedance matrix given in (29).
+"-' sinky, LTcosk, RT (20) For a given propagation constant the fields in any region and

kL the current distribution may be found using the equations pre-

V- k.---R-R sin ktTos k•, LT sented in the previous section.

inIV. Nukmuc.L RESULTS

+ $sin k. LTcosk,, RT (21) This section presents numerical results demonstrating the
ky.L 'accuracy of the MM solution, and some effects of chirality on a

with k2 -, - (kR + kL)/2. For example, the E, field microstrip transmission line. All currents are normalized to I



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 39, NO. 11. NOVEMBER 1991 1891

Chiral Microstrip Line constant is not significantly affected unless the chiral parameter
fr= , )r= . T= 3 m, = mmis a significant percentage of the maximum value set in [15] of
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3 Scattering by a Chiral Cylinder of Arbitrary Cross Section
In the Presence of a Half-Plane

3 M. S. Klushens and E. H. Newman

Dvartment of Electrcal Ensineafn
ThM Ohio State Uniersity
ElectroSdance Leboratory
13*0 KInnur Rd.
Coumbus, Ohio 4=12

IAbstract- Anintegral equation admtoofmaroets/Green's function solution to the

problem of scattering by a chiral cylinder of arbitrary mross section in the presence of t
perfectly conducting half-plane is presented. The volume equivalence theorem for chiral
media is used to formulate a pair of coupled vector Integral equations for the equivalent
electric and magnetic volume polarization currents representing the chiral cylinder. The
pmence of the half-plane accounted for by Including the half-plane Green's function in
the kernel of the integral equations, and efficient techniques for accurately evaluating the
Integrals In this Green's function are presented. Numerical results illustrate that a chral
cylinder surrounding the half-plane edge can significantly modify the scattering from theedge. The chiral cylinder Is also seen to produce significant crosspolarized scatteredWkds, which are a direct result of the rotation of field polarization In a chiral medium.

I L IN7TRDUCTION

This paper presents a pulse-basis point-matching method of moments (MM)/
Green's function solution [I] to the two-dimensional problem of scattering by
an isotropic and 'nhomogeneous chiral cylinder of arbitrary cross section in the
premence of a perfectly conducting half-plane. The solution allows the efficient
analysis of the effects of a chiral coating on the scattering from an ideal knife
edge. This technique can be used to study the use of chiral media to modify or
control edge difiaction, which could have application to reflector antennas or to
antennas on finite ground planes. Also, the MM solution can serve as a reference
solution for asymptotic or approximate methods.

chiral medium is a reciprocal medium characterized by different phase ye-
iwcites for right and left circularly polarized wave In a ousliess chiral medium, a
inearly polarized wave undergoes a rotation of its polarization as it propagates.
These are the sume properties as an Isotropic optically active media; therefore,
the s-n constitutive relationships can be used (, sec. 8.3]. For chiral cylinde,,
theme propertie result in a coupling of the TM and TE polarizations. A partial
IM of references describing chiral media is given by [3-9].

Following the authors' previous work [10,11,12], the present solution uses the
chiral volume equivalence theorem [10] to replace the chiral cylinder bf free space
and equivalet ekctri and magnetic volume polarization currents (7,V) . Theme
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polarization currentL are formulated as the solution to a pair of coupled vector
integral equations. The electric surface currents on the half-plane are not explic-
itly Included as unknowns in the MM solution. Instead, their effects are exactly
accounted for by including the half-plane Green's function in the kernel of the
integral equation [13, sec. 8.3]. Efficient techniques for accurately evaluating the
Integrals In this Green's function are presented in the appendix. These coupled
vector integral equations for (',M?) are equivalent to six coupled scalar inte-
gral equations for (Jr, J4, Q.) and (Mx, My, M•), which are solved using a
pulse-basis point-matching MM solution. It is noted that this problem could be
formulated in terms of surface currents or the chiral cylinder [5,14]. The main ad- I
vantage of the volume formulation is that it can more easily treat inhomogeneous
media.

Numerical results, including echo width and internal fields, are presented for
the scattering by two geometries, a chiral slab and a double-wedge at the tip of
the perfectly conducting half-plane. These results are .ompared with the fields
produced by similar achiral bodies in the presence of the half-plane and the bare
half-plane. In addition, the cross-polarized fields, produced by the coupling be- S
tween the TM and TE polarizations in a chiral medium, are shown to be of
comparable magnitude to the co-polarized fields.

U. DERIVATION OF THE INTEGRAL EQUATIONS

This section develops a set of coupled integral equations for the equivalent electric
and magnetic currents representing a chiral cylinder in the presence of a perfectly I
conducting half-plane. In this paper, all fields and currents are considered to
be time harmonic with the •"'•0 time dependence suppressed. The constitutive
relationships for a chiral medium [2, sec 8.3] can be written as

D =e - jfC(1)I

jcp (2)

where p is the permeability, e is the permittivity, and the pseudoscalar 6 [2,
p. 176] is the chirality admittance of the medium. If p, e, or Cc are complex the
media is losy. In an inhomogeneous chiral medium p, e, and Cc are functions
of position. If f -- 0, then (1) and (2) reduce to the constitutive relations for
an achiral medium. To simplify the following developments, (1) and (2) can be
written as

S= -(• 3)I

s PIT= + g•X (4)

where the effective permittivity, ec, of the chiral medium is defined by
2 M + (5)

In the original problem of Fig. la, the impressed currents ( Xrw) radiate the

conducting half-plane and a chiral cylinder with constitutive parameters (P, e•,

I
U
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confined to the region R. The chiral cylinder may be lossy and/or inhomogeneous.
As shown in Fig lb., the chiral volume equivalence theorem [10] is used to replace
the chiral cylinder by free space and the electric and magnetic volume polarization
currents

:7 = j -(•_o) VT + g T (6)
V -j(A - P0) 7T - Wgcf T (7)

confined to the region R, where (p0, eo) are the constitutive parameters of free
space.

In the equivalent problem of Fig. ib, the total fields WT, )at any
in space are given by

-ST r + l +(8)

-RT F + 7 +(9)

where (rw//), (i r7), and (•',ii•) are the fields radiated by

(7,V), 7, and X, respectively, in the presence of the half-plane. Then,
substituting (8) and (9) into (6) and (7) yields

- - CE [I + 1] + aE7=- + CE in R (10)

S-"-R- CM IV + + aM'l =VI+ C4 in R (11)

where cE, cM, aE, and aM are defined by

CE jW WC.E (12)I cE •jMec - eo)

"CM = W - ) (13)

,E =j,(_) (14)
1

aM =m (p_- 0) (15)

Equations (10) and (11) can be considered to be coupled integral equations for

(,X)since the fields (11, R') and ( raI e) can be written as integrals,

over the region R containing the chiral cylinder, of 7 and Vl, respectively,
dotted into the appropriate half-plane dyadic Green's function [13, sec 8.3]. For

ea•mple, could be written as

IF7) - /7(Y'l) 3(1'F, ') do' (16)

where rf in the source point, 11 is the field point, and 3 is the electric field dyadic
Green's function for a magnetic line source radiating in the presence of a perfectly
conducting half-plane.

I
I
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Figure 1. (a) Original problem (, ), ha-plane and chiral sa•t-

terer. (b) Equivalent problem: scatterer replaced by free space

and (, . I
Equations (10) and (11) are then solved using a pulse-basis point-matching MM

solution. The MM solution is notationally identical to that presented in [10] for
a chiral cylinder in free space, except that all fields are evaluated in the presence
of the half-plane instead of free space. Since the half-plan Green's function can
be written as the sum of the free space Green's function plus a correction term
which accounts for energ scattered by the half-plane [12,151, the elements in the
MM matrix equation can be written as those for the chiral cylinder in free space
plus a correction term which accounts for the presence of the half-plane The free
space components can be evaluated using the methods described in [10,111. The
evaluation of the correction term requires the numerical evaluation of a class of
integals. The efficient evaluation of these integrals Is discussed in the appendib.

IfL NUMERICAL RESULTS

This section presents numerical results for TM Z and TE z scattering by two
geometries, a chiral slab on a half-plane and a double-wedge covering the tip of a

half-plane. All data Is at a frequency of 300 MHz. The chiral parameters used in
this section obey the limit set in [161 of ICl < v•/e7. The literature contains a 3

I
I
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limited amount of numerical data for scattering by chiral objects. Some numerical
data is available for chiral spheres [17,18] and spheroids [19]. In a recent paper,
the authors presented an eigenfunction solution for multilayer chiral cylinders [20].

Figure 2 shows the backscatter echo width pattern for a TM Z plane wave
(E. - e-jko(z*O411hdnO)) incident upon a lossless chiral slab at the tip of a
perfectly conducting half-pfane. The slab is I meter wide and 0.2 meters thick,
with parameters of er - 4.0, pr = 1.5, and f, = 0.002A/V. For comparison,
the echo widths of the achiral slab and of the bare half-plane are also shown.
Although the half-plane is the dominant scatterer, the presence of the chiral slab
does produce a significant change to the echo width. In particular, the chirality
produces a cross-polarized component to the echo width which, in the region
#1 :5 120*, is of comparable magnitude to the co-polarized echo width. This
cross-polarized field is a direct result of the rotation of polarization which occurs
in a chiral medium. The magnitude of the internal fields along the center line
(y = 0.l m) of the slab are shown in Fig. 3 for O = 60*. Again, the cros-
polarized fields (Ex, EV, H.) are a result of the rotation of field polarization in
the chiral medium, and are of comparable magnitude to the co-polarized fields
(Ex, HHy). Chiral Slab & Half-Plane

-E/ Ar= 1.5
Yt - =4.0

Freq.=300 MHz
20

ID, Co-polarized (E.)
A:D

"20
0- Half-plan

0 Cross-polarized (E,)Y-J--40
0 W0 1go to 240 3W0 m0

0 (deg)

FIgre 2. The co-polarized and cro-polarized backacatter (0 = ') echo
width of a lossless chiral slab at the tip of a perfectly conducting
half-plane.
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plane geometry show in Fig. 2 with a TMZincident wave from
600.

Figure 4 shows the bistatic scattering from a perfectly conducting half-plane
with a lossy chiral double-wedge covering the tip. The double-wedge is 2 meters
wide and has a maximum thickness of 0.08 meters at the center. The upper graph
shows the co-polarized and cross-polarized bistatic echo widths for a TM Z wave
incident from 1800 (0, = e-$kg). The bistatic echo width for an identical achiral
(&c - 0) double-wedge and for the bare half-plane is also shown for comparon.
The lower graph displays the same data for a TE Z wave incident from 0* (1P,=
.'kO). In each case, the chiral double wedge causes a significant modification to
the scattering from the half-plane. For example, for the TM Z case, the chiral
wedge reduces the edge on backscatter (€ =1800) echo width from -8 dB/m to
about -60dB/rn while the achiral value is about -16dB/m. The chirality also
produces a significant cross-polarized component for both the TM Z and TEz
caes. Again, these cross-polarized fields are a direct result of the rotation of
polarization in chiral medium.
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APPENDIX: EVALUATION OF THE INTEGRALS IN THE HALF-PLANE I
GREEN'S FUNCTION

The Green's function for a i polarized line source in the presence of a perfectly
conducting half-plane involves the integrals (13,8.3] I

S,(aj) =7 00 : '-1/2 du (17)

for i - 1, 2. This appendix will present new and efficient techniques for accurately
evaluating these integrals. For a lossless ambient medium a and 0 are real
numbers. The range of a that needs to be explicitly considered can be restricted
to a>0 using [12]

Si(a,p) = so(p) - Si(-a,#) (18) I
where i - 1, 2 and the Sio(0) are defined by

Si(O =S(-o,) jj ejP2/2H0 2) (19)1

S4)= S2(-00,0) _ _jj e9j 2/2 (H2 ~)+~ 2) (()0)
Method I: Numerical Integration (fll > 1.6, all 0)

This section presents a numerical integration technique for S1 and S2 re-
quiring far fewer points then previous approaches [11,12,15]. Using the change
of variables u2 -. and zX .a2 - jt, where the second change of variables
corresponds to changing the integration path for z to the contour z - 02 to U
-joo+a t to 0o, (17) can be rewritten as

ci01)=-jC 0 - t (21)1(a -,(+,2)-12 ,-)

where the portion of the path at infinity does not contribute to the integral.
These integrals are now in a form suitable for Gauss-Laguerre Quadrature [21,
sec. 25.4-45], which Is very efficient and requires only two integration points for
(al > 8 to achieve six-digit accuracy.

Method 11: Small Argument Approximations ( lal < 1.6, 0 <,02 < 7)

This section presents efficient small argument approximations for the S, inte-
grals when a and 0 are small. The 0=- 0 case can be done analytically and is
not discussed here. In this region the integrals are evaluated using

S,(a, ) = Siso(fl) -sign (a) AS,(0, Ial, P) (22) 1
where i - 1,2, the Sio are defined in equations (19) and (20), and the A*i are

I
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defined by e- d

0 (Us

The AS, can be evaluated using the Taylor series expansion for e-.Iu and
integration by parts, which produces

&Si(0, lal, 6) =j" ha,, In (1ii1 +R I +)
+ ÷,o ,i (24)

where a,! andm reverse recursion and the relations
S_ .R-l+iait owl + j,( n I + i0 # '2 + (25)

bs n-1 b( . 1,,,, forn>1 (26)

0Z""2. 1 -9 + A 02b2,2 (7

which are valid only for i - 1, 2.

Method III: Small/Largp Argument Approximations (l o < 1.6,$ 9Ž7)

This section presents efficient small/larr argument approximations for the S,
Integmas when a < i and 0 is arge Using (22) AS, in evaluated using the
binomial fas (u2 + #2)1/2- and integration by parts, which produces

AS(O,a, P) - 1 [cti ) -ji S I a da (29)

wher c,,j and di are computed using reverse recursion and the reltion

+j(n-i) (n-j+s) 1,CW (0

Cdsn w1 U 02d+J~ (31)

F(a) is the Hamel Integral given by

F(c)/- ie-i'd• (32)
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High-Frequency Techniques for
Antenna Analysis

PRABHAKAR H. PATHAK, FELLOW, IEEE

Invited Paper

A summary of various high-frequency techniques is presented incident and reflected rays obey Fermat's principle, and are
for analyzing the electromagnetic (EM) radiation from antennas associated with the usual geometrical optics (GO) incident
in the presence of their host environment. These techniques not and reflected fields. In the case of penetrable objects,
only provide physical insight into antenna radiation mechanisms,
but they are found to be highly efficient and accurate for treating there also exist GO transmitted rays. On the other hand,
a variety of practical antenna configurations. Examples to which the diffracted rays are generally found to originate from
these techniques have been applied include open-ended waveguide geometrical and electrical discontinuities, and from points
antennas, horn and reflector antennas, antennas on aircraft and of grazing incidence on smooth convex portions of the
spacecraft, etc. The accuracy of these techniques is established via diating obje
numerical results which are compared with those based on other ra ct. The existence of these types of diffracted
independent methods or with measurements. Furthermore, these rays has been postulated by Keller, via an extension of
high-frequency methods can be combined with other techniques, Fermat's principle, in his development of the geometrical
through a hybrid scheme, to solve an even greater class ofproblems theory of diffraction (GTD) [1); this ray method will be
than those which can be solved in an efficient and tractable manner summarized later in more detail. Such a rather simplified
by any one technique alone. and physically appealing picture for the transport of high-

frequency EM energy, locally along incident, reflected, and
I. INTRODUCTION diffracted rays, is in sharp contrast to the description of EM

A summary of some high-frequency techniques is pre- wave radiation at low frequencies that is generally given
sented for efficiently and accurately analyzing the elec- in terms of the radiation integral on the currents induced
tromagnetic (EM) radiation from antennas in the presence globally over the antenna and its entire host structure
of their host environment. Such high-frequency techniques by the primary antenna excitation. At lower frequencies,
also provide a physical insight into the antenna radiation one can either employ numerical methods (e.g., momentmechanisms involved; this property is useful for both method, conjugate gradient method, etc.) to solve integral

analysis and design purposes. equations for these induced currents, or numerically solve
At sufficiently high frequencies (or short wavelengths), (using finite element or finite difference schemes) the partial

EM wave radiation, propagation, scattering and diffraction, differential equations governing the total field behavior.
exhibit a highly localized behavior. Such a local description One could also employ a numerical modal (eigenfunction)
of high-frequency EM waves is given in terms of rays matching technique for obtaining the relevant field solu-
and their associated fields. Thus the total high-frequency tions. However, at moderate to high frequencies all of these
field at an observation point is given by the superposition numerical techniques [64] become very poorly convergent
of the fields of all the rays that arrive there, such as and inefficient because numerical solutions are generally
via a direct (incident) ray path from the primary antenna based on exact formulations that must satisfy field self-
excitation (source), and via rays which experience reflection consistency in a global sense, i.e., over the entire radiating
and diffraction from generally different but highly localized object, rather than requiring a knowledge of the fields in a
regions or "flashpoints" on the antenna and its host struc- local sense as done in the high-frequency approximations.ture, as shown for example in Fig. 1. In particular, the It therefore becomes necessary to employ high-frequency

techniques for analyzing electrically large radiating objectsManuscript received January 5,t1991; revised June 15, a ye. Tcis paper in a tractable fashion.wans supported in pan by the Joint Services Electronics program under
Contract N00014-88-K-0 with the Ohio Seate University during the Oue could demonstrate the local nature of high-frequency

piepairtiou of this paper. radiation if one begins by considering the radiation integralThe author is with the Department of Electrical Engineering, Electro.
Science Laboratory, Ohio State University, Columbus, OH 4312. over the spatial current distribution induced on a radiating3 LAS Number 9105507. object by the primary excitation. At high frequencies, the
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1
of either the spatial or the spectral type leads to the de-

CeWi" IVAN scription of a particular ray mechanism (e.g., ray reflection,
ray diffraction, etc.) thereby analytically demonstrating the
principal of localization of high-frequency fields. Such
an evaluation of the radiation integrals in terms of a

u, superposition of the contributions from just the isolated
critical points in the integrand constitutes an asymptotic

(a) (b) high-frequency approximation for the integrals. Typically,
the asymptotic evaluation is performed with respect to a

MANt NMIlarge parameter, e.g., the product of the wavenumber (27r/A,\
where A = wavelength) and some characteristic distance,Iva and the asymptotic approximation becomes increasingly

accurate with increase in the large parameter.
5, -r It can be verified from an asymptotic evaluation of the

W (d) radiation integrals, as discussed above, that the ray fields
exhibit a "local plane wave" behavior; i.e., the rays are

MaceI~lvl perpendicular to the wavefront (or equiphase) surface in
an isotropic medium as shown in Fig. 2; in particular, the
wavefront is locally plane in this high-frequency approxi-
mation, and the ray field is polarized transverse to the ray.
The rays are straight lines in a homogeneous medium. The
concept of wavefronts and rays is not new; indeed, it has 3

(e) (M been central to the development of classical geometrical
optics (GO). One recalls that GO includes only the incident,

Fig. 1. Rays launched from an infinitesimal antenna element on reflected and transmitted ray fields. Limiting the present
an aircraft, discussion for the sake of convenience to antennas and I

their host structures that are impenetrable, it then follows

phase of the corresponding integrand oscillates rapidly that only the GO incident (or direct) ray from the primary

and produces a destructive interference, or cancellation, excitation and the GO reflected rays can exist in this case.

between the various spherical wave contributions which An example of this situation is shown in Fig. 3 where

arrive to a given observation point from the region of inte- the line source excites an impenetrable structure; the GO

gration over the radiating object that excludes any stationary incident and reflected rays exist only in certain portions
phase points in the integrand. The dominant contribution of the space surrounding this structure. The incident raysto the radiation integral then arises from the constructive (directly radiated from the line source) do not exist beyondthe edge induced incident shadow boundary (ISB) and theinterference between the spherical waves which emanate smooth surface induced surface shadow boundary (SSB), I
from the local neighborhood of any stationary phase points respectively. Also, the reflected rays disappear beyond the
in the region of integration, and also from the end or edge induced reflection shadow boundary (RSB). Therefore,
boundary points of the integral, etc. A similar situation GO fails to predict a nonzero field within the shadow 3
occurs when employing a spectral rather than the spatial regions of the incident and reflected rays where such
representation of the radiation integral; in this case the rays cease to exist, and consequently GO cannot describe
dominant contribution to the spectral integral for the high- the diffraction effects behind an impenetrable structure;
frequency case again arises from the local neighborhood this may be visualized in Fig. 3. The failure of GO
of certain critical points in the spectral integrand, such as in geometric shadow regions, where the source and its
saddle points, poles, etc., while a destructive interference image are not directly visible, was overcome by Keller's
generally exists between contributions from the remaining GTD [1]. The existence of these diffract.-d rays in the
portion of the spectrum. The critical points within the GTD can be readily verified via the asymptotic reduction
spatial representation of the radiation integral physically of the radiation integrals pertaining to various canonical
correspond to the "flashpoints" or points of reflection, trans- diffraction problems. Thus according to GTD, the field at
mission and diffraction on the radiating object. On the other the edge QE, which is incident from the line source at Q',
hand, the critical points within the spectral representation gives rise to edge diffracted rays emanating from QE as
for the radiation integral correspond to specific directions, in Fig. 4. Likewise the incident ray from Q' which grazes
or rays, along whtich the high-frequency field propagates the surface at Qs launches a surface ray which propagates
to the observer. Furthermore, these rays originate from around the smooth convex boundary transporting energy
the flashpoints alluded to earlier; consequently, both the into the shadow region. Surface diffracted rays are shed
spatial and spectral forms of the radiation integral yield along the forward tangent to the surface rays as shown in
the same local picture for the radiation of high-frequency Fig. 4. The field at P1 in Fig. 3 consists of simply the GO Ifields. Indeed, a critical point within the radiation integrand incident and reflected fields, whereas according to GTD

1PATHAK: TECHNIOE FOR ANTENNA ANALYSIS 45 1



I
simpler canonical problems that model the geometrical and
electrical properties of the original problem in the local
neighborhood of the point of diffraction. As a result of
the extended Fermat's principle, the rays diffracted by an

WAVFRONT .5ý7 edge lie on a cone about the edge with the cone half angle
equal to the angle that the incident ray makes with the edge
tangent at the point of diffraction as in Fig. 9. In the case
of a two-dimensional problem, the cone of diffracted rays
collapses to a disk as in Fig. 4. Furthermore, the surface

Fig. 2. Wavefront surface and associated family of rays. ray initiated at Qs in Fig. 4 follows a geodesic path on the
convex boundary; also once launched, the surface ray field
attenuates as it propagates, because energy is continually

LIM sshed via rays diffracted tangentially from the surface ray.
AT Away from the point of diffraction, the GTD diffracted

ray field behaves just like a GO ray field. However,
1 tP2 such a purely ray optical field description of the GTD

fails within the transition regions adjacent to the shadow
boundaries (e.g., ISB, RSB, and SSB in Fig. 3) whereI .,the GTD diffracted fields generally become singular. The

angular extent of the transition region varies inversely
3 with frequency and it also depends on some characteristicI35 STRUCTRE' distances as will be discussed briefly in Section II. Such a

•P4 transition region may be viewed as one through which the
3 GTD field changes its ray optical behavior, e.g., as from

Fig. 3. Geometrical optics (GO) incident and reflected rays pro- an fieldc hanesntt ray optical tyehto avdiffracted g. r a s fomtcltp
duced by a line source radiating in the presence of an impenetrable

structure, across an ISB. This failure of the GTD within the shadow
boundary transition regions can be patched up via uniform
versions of the GTD such as the uniform geometrical theory

p c-of diffraction (UTD) [2H4] and the uniform asymptotic
theory (UAT) [5]. Additional references dealing with the
GTD/UT/UAT may be found in [6]-[11]. The UTD willI2 be used in this paper as it has been developed for a variety
of canonical shapes, whereas the UAT has been developedi x~a....,•only for an edge at the present time.

It was indicated earlier that the asymptotic evaluation of

Ra- in tem ony fo an euperpastino the coes ntribti onmfoecrtiradiation integrals gives rise to a total high-frequency fieldiP / 3B in terms of a superposition of the contributions from certain

3183 isolated or critical points in the integrand (which can be

seen to correspond to the field of GTD rays). Some of these
critical points can come close together when the observation

ft. 4. Edge diffracted rays originating from the edge Qr and point lies within the shadow boundary transition regions,
rays diffracted tangentially from the surface ray excited at the point and even coalesce for an observer on the shadow boundary
of grazing incidence Qs. itself. This leads to a "coupling between the critical points"

and the asymptotics must then be modified; i.e., it must

the field at P1 in Fig. 4 also contains the additional edge be performed via a uniform procedure which accounts
diffracted ray field. The field at P3 in Fig. 3 is due only to for this coupling and thus forms the basis of the UTD.
the GO incident field, but GTD again requires that the edge In the UTD, the GTD solution is modified through the
diffracted field be included at P3 as in Fig. 4. The field at use of uniform asymptotic procedures which systematically
P 4 in Fig. 3 vanishes as predicted by GO; in contrast, the introduce additional factors, referred to as the UTD transi-
OTD predicts a nonzero field at P4 which is a superposition tion functions. These UTD transition functions compensate
of the edge and surface diffracted ray fields as in Fig. 4. the GTD singularities at shadow boundaries and keep

SThe GTD field is clearly a superposition of GO and the total high-frequency field bounded, and continuous,
&'ffracted ray fields. Just as the initial amplitudes of the across these boundaries, thus keeping the field valid within
GO reflected and transmitted ray fields are given in terms the transition regions. Furthermore, outside the shadow
of the reflection and transmission coefficients, the initial boundary transition layers, the UTD automatically reduces
value of a diffracted ray field is likewise given in terms to the GTD. These transition functions are special functionsof a diffraction coefficient. The relevant diffraction co- characteristic of the diffraction process; e.g., in the case of

SPROCEEDINGS OF TDE IEEE. VOL SO, NO. 1, JAWARY I9



I
the case of convex surface diffraction they involve Fock

functions 112] which contain integrals of Airy functions. P D -R, RAY

The latter functions are named after V. A. Fock who
contributed significantly to the analysis of wave diffraction "MY
by smooth convex boundaries. I

It thus follows from the preceding paragraph that it is a I-s
the UTD and not the GTD which must be used in practical
applications to obtain continuous total (high-frequency) I
fields (around the radiating object). Besides the singularities
of the GTD at the GO shadow boundaries discussed above,

the GTD and its uniform versions such as the UTD,
UAT, etc., exhibit singularities at the caustics of GO and P

diffracted rays. Ray caustics occur whenever a family of OF DFRTED

rays (i.e., ray congruences) merge or intersect; examples of P PAYS AT P

ray caustics are shown in Figs. 5 and 6. In particular, the (a
diffracted ray caustic at P in Fig. 5 is produced on the axis (a)
of a symmetric parabolic reflector illuminated by a feed at
the focus. The smooth caustic of reflected rays in Fig. 6 1
is produced by a shaped subreflector which is a surface of
revolution; it is illuminated by a feed antenna located on LINE CURRENT

the subreflector axis. This subreflector surface exhibits an l- OZ M

inflection point along its generator giving rise to the caustic. It e
Such a smooth caustic can also be produced by a concavereflector surface. A curved edge can likewise generate a ... .. - .1

smooth caustic of diffracted rays. Ray caustics can become //NR I

problematic in the GTD/UTD/UAT computations only if ------ I oZ M .J

they occur in real space (exterior to the antenna and its host
structure); otherwise, they are of little concern whenever
they occur in virtual space e.g., within the scatterer or the
antenna host structure, unless the transition region adjacent
to the virtual caustic emerges into external space where a P
field or observation point may be located. The failure of (b) (c) I
the GTD/UTD at GO or diffracted ray caustics and their
associated transition regions can be patched up through Fig. 5. Point caustic of edge diffracted rays on the axis of a

a uniformizing procedure which again introduces special symmetrically fed parabolic reflector.

functions (or caustic transition functions) to correct the
pure ray solution. For a smooth caustic as in Fig. 6,
the special transition function involves the Airy function reduces to GTD) describes the fields within such caustic

and its derivative [131, [14]; if the caustic curve has a transition regions in terms of a radiation integral over a
cusp then one obtains Pearcey functions (related to the set of equivalent line currents that replace the original
parabolic cylinder functions) [15]. If either the smooth geometry and its illumination; these equivalent currents
or the cusped caustic terminates, as might happen when are found from the GTD diffraction coefficients which are a
the reflecting surface terminates at an edge, then one not singular in caustic directions even though the actual

requires incomplete Airy functions or incomplete Pearcey GTD ray field is singular there (4]. The fields in the
functions, respectively [15], to evaluate fields near the diffracted ray caustic region of Fig. 5 can be treated by
caustic termination. These special functions (or transition ECM. This ECM procedure, if formulated properly, is a
functions) reflect the coupling of the pertinent critical points uniform procedure in that away from the caustic transition
in the asymptotic evaluation of the radiation integral as region, the ECM radiation integral reduces asymptotically
discussed earlier, to the GTD. In a few cases, the ECM radiation integral I

A procedure which can treat more general diffracted ray reduces to a closed form result, or it can be expressed in
caustic effects is based on the equivalent current method terms of special functions (e.g., Airy or Pearcey functions)
(ECM) [16], [17]. The ECM while primarily useful for alluded to above; however, in general the integral must be I
handling caustics of diffracted rays can in some special evaluated numerically.
cases also be employed to handle caustics of reflected rays. The diffraction effects within the GO shadow boundary
In general, the ECM, which corrects for the singularities transition regions are generally not localized to just the
of the fields at diffracted ray caustics that lie outside edges or points of diffraction because they are then coupled
the ISB, RSB and SSB transition regions (where UTD to the GO effects on the reflecting surface, and in order
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in the PTD can be evaluated asympo.ltically, they recover
- the leading terms of the GTD fields. Furthermore, if these

PTD integrals can be evaluated asymptotically in a uniform
fashion, then PTD can be shown to recover the UTD. The
intimate connection between the PTD and the GTD/UTD
indicated above allows one to view PTD as an integral
version of the GTD/UTD which is valid even in regions of

",0 ray caustics, and also in regions of overlap of caustic and- - - GO shadow boundary transition regions where GTD/UTD
SHAPED .. . FEED fails. However, PTD requires an integration whereas UTD

SUBREFLECTOR a does not. Therefore, it appears to be far more efficient to
employ UTD everywhere except at ray caustics, and in
the overlap of caustic and GO shadow boundary transition

Qa •b r' regions, where the more general PTD integrals may be used
,o •a to patch up the UTD. While the PTD is a high-frequency

Q r PLtechnique in its own right like the GTD/UTD, it has been
b Sbdeveloped only for edges as indicated previously, whereas

the UTD can also handle surface diffraction and other types
of diffraction mechanisms. Furthermore, the PTD cannot
account for multiple diffraction effects as easily as the

L CAUSTIC GTD/UTD; such higher order multiple wave interactions
can become important if the scattering/diffraction centers
come close together on a radiating object (e.g., if a pair

of interacting edges come close together). Nevertheless,
Fig. 6. Ray causic generated by a shaped subreflector illuminated the PTD has been often used for predicting the dominZnt
by a feed antenna. contribution to the radar cross section (RCS) of complex

targets (e.g., aircraft, missiles, etc.).
to correct for the singularities of GTD ray caustics in The above-mentioned high-frequency techniques based

- directions where the associated caustic transition regions on the GTD/UTD, ECM, and PTD will be applie2 to some
overlap with the GO shadow boundary transition regions, illustrative antenna examples in the next section. An e'J-'
one must therefore resort to a surface integral representation time convention for the sources and fields will be assumed
and not the line integral approximations of ECM. The and suppressed in the following work. Also, k is assumed to
physical optics (PO) surface integral approach [18] and be the wavenumber in the isotropic homogeneous medium
its modifications based on Ufimtsev's physical theory of external to the antenna and its host structure (k = 2ir/A; A
diffraction (PTD) [19], [20] for edged bodies as discussed = wavelength in the external medium).
in Section II-C, and Fock's theory for curved bodies [12],
become useful for treating the fields within the overlap II. SUMMARY OF HIGH FREQUENCY TECHNIQUESg of diffracted and/or GO ray caustic and GO ray shadow WITH SPECIFIC ANTENNA APPLICATIONS
boundary transition regions. An example of the overlap of The high-frequency techniques such as the GTD/UTD,
the caustic and GO shadow boundary transition regions is ECM, and PTD, which have been briefly discussed above in
again provided by Fig. 5, where the RSB coincides with the Section 1, are reviewed in slightly more detail in this section
forward axial caustic of the edge diffracted rays in the far and results based on these techniques are illustrated forzone of the reflector. Furthermore, there are also an infinite dealing with some antenna geometries of interest. The main
number of rays reflected from the parabolic surface which focus will be on GTD/UTD-based applications; these will
contribute to the far field in this forward axial direction. be discussed first. The applications based on the ECM and
The forward axial direction of the parabolic reflector is the PTD will be illustrated next only from the perspective
therefore also a caustic of reflected rays in the far zone, of patching up GTD/UTD in those few special situations

* in addition to being a caustic of the edge diffracted rays. where the latter fails as discussed previously, such as in5 While the PO method in itself gives quite accurate results regions of ray caustics, and wherc there is a confluence of
for caustic fields in the region of the overlap of the GO
shadow boundary and caustic transition regions, the PTDK which provides a correction to PO can yield more accurate
results outside the caustic region. It is noted that the PTD is A. GTD and Its Uniform Version, UTD
a superposition of PO and the correction to PO as specified As discussed in Section 1, the GTD/UTD is a ray tech-
by Uftmtsev. nique. Therefore, it would be worthwhile to firstly develop

In general, the integrals in the PTD approach must be a general expression for the ray optical field. While there
evaluated numerically; only in special cases can they be are several procedures, involving either the relevant asymp-
-valuated in closed form. In situations where the integrals totic approximations of radiation integrals pertaining to
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I
certain canonical radiation problems, or the asymptotic
(Luneberg-Kline) series expansion of the wave equation, ddPl dA
to arrive at a ray optical field expression, the simpler A 0
and less rigorous approach based on geometrical consid-

erations is employed here. In particular, since energy in
the high-frequency EM field is assumed to be transported IC d02

along rays, it follows from geometrical considerations that S

power must be conserved in each narrow tube of rays P2
(or a ray pencil) in a lossless medium. Thus consider
any given (central or axial) ray OP in a ray tube as I
shown in Fig. 7. Let the principal wavefront radii of Fig. 7. Ray tube (ray pencil).

curvature at 0 be P, and P2, respectively; the corresponding
principal wavefront radii of curvature of that ray at P where Yo = IIZo, and Zo as before is the local plane wave
are (Pi + s) and (p: + s), where lOP- = s. Let the impedance of the medium in which the ray propagates.
electric field intensity at 0 and P be E(O) and E(P), The quantity E(P) in (lb) may represent a field which
respectively; thus, the power crossing the vrea dAo is given is associated with either an incident ray, or with rays that
by (1/Zo)IE(O)12dAo where dAo ; J(pIdVba)(p 2dV,2)1 are reflected or transmitted at an interface between two
and where Z. is the plane wave impedance in the medium; media, or with diffracted rays. The initial ray amplitudes
likewise, the power crossing dAP is (1IZo)I-E(p)I 2dAP at the points of reflection and transmission can be found
where dAP ; I[(Pi + s)dV,1][(p 2 + s)dV' 211. Conservation by enforcing the EM boundary conditions at the interface;
of power in the ray tube requires (1/Zo)-E(P)I 2dAp = these conditions also lead to Snell's laws of reflection and
(1/Zo)1E(O)1 2 dA.; i.e., transmission which are consistent with Fermat's principle

and which could in fact have been derived from it. The 3P= PP: (la) initial value of the diffracted ray field is given in terms ofIE(P = E(O)I (p + s)(p2 + s) the diffraction coefficient and the diffracted ray path obeys

Incorporating the local plane wave polarization and phase the extended Fermat's principle. Thus in general, (lb) can
heuristically into (1a) yields the rule for continuation of the be written as I
field E(O) at 0 to the field E(P) at P along the ray OP as f2 __ e-jksp (3a)

E(P) , E(O) (Pl + s)(P2 + S) (1b) with p "- i, r or d (3b)

The field in (lb), which is referred to as an arbitrary ray where the superscript or subscript, p, refers to the incident
optical field (where P, and P2 are arbitrary), can be shown (i), reflected (r) or diffracted (d) ray fields. I
to reduce to a plane wave (if [PI . P2] --+ oc), cylindrical or 1) Incident GO Ray Field: Letting p = i in (3a) and (3b)
conical wave (if p, or P2 - oc), and a spherical wave (if allows one to write the GO incident ray field as
P1 = P2 = finite value), respectively. Thus the latter more
familiar wave types are all special cases of a ray optical - / P' P2 -
field whose general form is (lb). One notes that the ray E'(p) = E-(O2 ) + + '(4a)

congruences at 1-2 and 3-4 form a ray caustic (or centers of whr i te ren

radii of curvature p, and P2, respectively of the wavefront) where Ui is unity in the region where the GO incident ray
in Fig. 7. The p, and P2 are positive if the ray caustics field exists and is zero otherwise. The incident principal
at 1-2 and 3-4 occur before reaching the reference point wavefront radii of curvature 2 and p[ are measured from
O along the ray direction .i in Fig. 7; otherwise, they are the reference point O, along the incident ray to P. It
negative. The positive branch of the square root is chosen in is noted that s' = O--Pj. In the two-dimensional case
(lb); hence, irPI.2 < 0 and s > -IP21 or s > -Ipal, then a p' -- oo and (4a) becomes
caustic is crossed at 1-2 or 3-4, respectively, and (P2 + s)
or (P1 + s) changes sign so that a phase jump of 7r/2 due -'(P) = "'(Oi) e-jka'Ui . (4h)
to caustic traversal needs to be included in (lb), because V1 + S

2) Reflected GO Ray Field: An expression for the re-
-= " e"•/z, flected ray field can be obtained by letting p = r in (3a)

and (3b), and by letting the point Op - O= , move to the
if pi = -Ip, I and s > -Ip,I, for i = 1,2. point of reflection QR, then (3a) and (3b) become

Ftrihermore, the magnetic field 17(P) at P is found from rQ P e-_U.(5
E(P) in (lb) via the local plane wave condition along a " "- p+ e" p• + P2
ray; namely, where the step function Ur is unity in the region where the 3

77(P) = Yoh x -(P) (2) reflected ray field exists and is zero otherwise. The reflected
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field Er(QR) at the point of reflection QR can be related
to the incident field M(QR) at QR by the dyadic surface a

reflection coefficient W as follows: ¶

r(QR) = r(QR)(5b) Sri

Incorporating (5b) into (5a) yields the required expression
for the reflected field at P due to the field incident on the
surface at the point of reflection QR as r

r(P) rQ ) A2 ei -eka'Ut. (Sc) P

h he reflected wavefront radii of curvature Pr,2 are shown
in Fig. 8 and they may be calculated via the egpressions
given in [2]. The dyadic reflection coefficient R may be (a) (b)
found by approximating the original surface locally by
a plane tangent to that surface at the point of reflection Fig. 8. Reflected wavefront curvatures and unit vectors associated

QR when it is illuminated by an EM plane wave, and with the reflection problem.

by enforcing the EM boundary conditions at QR. It is
convenient to express the incident and reflected fields in (8b) into (8a) with pd _p as O;-•QE gives
terms of the unit vectors fixed in the incident and reflected a

rays as in Fig. 8. Let el, and i be unit vectors fixed in the 1 pd 8c)plane of incidence containing the unit normal vector ft to the F-~)•••(E"es d + Sd e-kd" (C

surface at QR and the incident ray direction S' at QR, and
let these vectors also be perpendicular to the incident and It is convenient to e.xress the incident field r'(QE) and
reflected ray directions gi' and i", respectively. Likewise, let the diffracted field £ (P) in terms of unit vectors fixed in
6_ be a unit vector perpendicular to theplane of incidence the incident and diffracted rays as shown in Fig. 9. The

at QR. In these ray fixed urnit vectors, R becomes edge tangent 6 at QE and the incident ray direction ,i' form
--- ±R . the edge fixed plane of incidence. The unit vectors/3" and

lRh +± .) 0' are parallel and perpendicular, respectively, to the edge

For a perfectly conducting surface, R. = -1 and Rh = 1. fixed plane of incidence. Likewise #3o and 4 are parallel
If the reflecting boundary and illumination becomes two- and perpendicular, respectively, to the edge fixed plane of
dimensional, then pr - oc and (Sa) becomes diffraction formed by 6 and the diffracted ray direction ýd.

Furthermore, f" = i' x 0' and fo = id X ý. Thus - =

+~ ) e rQ)) ", ", =f.(r3anVEd+ (4).V),
so that ] is given by [21:

(two-dimensional case) (7) 3= -•'oDe.(€,4'; o - 4'Deh(4,4'; o) • (9)

3) Edge Diffracted Ray Field: Consider an edge dif-
fracted ray field produced by an incident wave which strikes The scalar UTD edge diffraction coefficients D,, and Deh
a wedge at QE as in Fig. 9. One can obtain the general contained in the dyadic UTD edge diffraction coefficient
expression for the edge diffracted ray field once again from Ve are obtained from a uniform asymptotic solution to
(3a) and (3b) by letting p = d so that the canonical problem of the diffraction of plane, cylin-

drical, conical and spherical incident waves by a perfectly
d(P), (O pd 1 2. e-js" (8a conducting wedge [2] and they contain a sum of four

() + 9d 72 + (8a) simple terms, each of which is a product of a cotangent

function (involving 4, 0', and/6o) and a transition function
It is useful to move the reference point Od along the edge F containing a Fresnel integral, where
diffracted ray at P to the point QE at the point of diffraction
on the edge; thus Pd --+ 0 as can be seen from Fig. 9. Even F(x) = 2j/xe dr e-j 2  (10)
though pd -, 0 in (8a) one can show that: J.5

r f 1 . e* (8b) The argument of the F functions depend on the incident,
lim (Od) V ] = r(QE) "Be (8b) reflected and diffracted wavefront curvatures, and they are

defined in [2]; the F function which is well tabulated, is

responsible for keeping the F bounded at the GO shadow
where r(QE) is the field of the ray incident at QE and boundaries where GTD predicts a singularity. Outside the
B. is the dyadic edge diffraction coefficient. Incorporating GO shadow boundary transition regions, the F function
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o9. 0 principle; these will be described in (16). Next, the field
d• ,(Po2) at P02 also in the near zone behind the reflector is:

-d --d
F(P02 )-El(P02 )+E 2 (P02) . (13) I

Fig. 9. Wedge diffraction geometry. Likewise, the field "E(Po3 ) at P03 in the near zone becomes

E(P03) (P 0 3 ) +Er (P0 3 )+ EI(P0 3 ) + E2(P 03 ) (14)
becomes unity and the UTD result then reduces automat-
ically to GTD. In the two-dimensional case, pd oc in in which Tr is the field at P 03 that is reflected from QR
(8c) so that --(p) = E(QE)'-.D DV/( )e-jkd for two- as in Fig. 10; it is given via (5c) by
dimensional edge configurations. Some examples which can - p e U
be analyzed using these UTD edge diffraction concepts are -r(P 03 ) ~ "E(QR)" (P• + s")(p + sr)
indicated below. I

Consider the symmetric parabolic reflector antenna With (15)

a feed whose phase center is at the focus of the parabola as with,
shown in Fig. 10. The UTD electric field at Pol in the near (1, within the region containing the z-axis
zone of this reflector as shown in Fig. 10 is then given by U,. = and bounded by RSB1 and RSB 2

0, otherwise.•(Po•)~ ~ E ~• o)+ (Pol) + E2P•) (1
T(Po 1) V(O1)+ (o 2(O1 (11) Also, E(QR) " cf(Oo,4,o)(e-k8/so) in (15) where 3

where the field r directly radiated by the feed to Pol has (90,o are the values of (0, 0) along the direction i. = I
the form (OQR)/(O-UQ_ I). Finally, the two edge diffracted ray fields

-c e,-o) (12) E and P2 in (11), (13), and (14) have the general form: I
with -(P.) oj)~ - D.(Qj) +

f ,in r-gion where the feed is directly visible,L
U, - , behind the reflector (within ISB 1 and ISB 2) E9E -- 1, O1. where the feed is shadowed. 

"d(Qj) + I (Q2 )

The quantity c in (12) is a known complex constant, and 
I

7(T, 0) is the vector radiation pattern of the feed with 0 '1 (16
measured with respect to the z axis while 0 is the azimuthal+ )(16)
angle about this axis of symmetry of the paraboloidal 3

reflector antenna; the quantity 7 is also assumed to be with j = 1,2 corresponding to Q, and Q2. While the
known. The field in (12 constitutes a spherical wave from term involving r'(Q E) Din (16) has been introduced
the feed. The fields Z" and T2 are diffracted from two in the discussion on the UTD for edge diffraction leading
distinct points on the edge of the reflector, where the plane to (8c), the term containing de' in (16) is an additionalcontaining Pot and the reflector axis intersects the edge contribution to the UTD edge diffracted field, and it is
at Qi and Q2 in accordance with the extended Fermat's termed as the slope diffraction contribution 131, [4]. The
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slope diffraction contribution becomes important if the in- CoSS
cident field r' and/or the reflected field Tr exhibits a rapid ififtsta,,e,,
spatial variation near the point of diffraction QE on the Coso---0..
edge. For example, if the field V' vanishes at the point of k .7,€m"1L ,, *Sma

diffraction QE, then the field diffracted from QE calculated O040 I z .$scenI Z &MOcms

via (QE) - would also vanish; however, if V WE) 0.S 1 c WkWA,

tends to vanish rapidly at QE so that its spatial derivative
symbolized here by 8F'/Dni may be significant, then it "ozo 3

could give rise to the slope edge diffraction contribution
which must therefore be included for accuracy. In the oLo

present application, if the feed pattern 7(0, 0) is rapidly
varying at the edges Q1,2 then the slope diffraction term 0 s 24 32 40 ,6 1 64 72
in (20) will be important; otherwise, the slope effects are ,,1.m w.ar fle patternL
generally negligible. The results in (11)-(16) have been o.os ,
employed in [21] to obtain the near field radiation from o0.o0 Ap4-,,re

a parabolic reflector antenna in the plane Z = z. + f 1tri

in Fig. 11. However, the results in (11) and (13) can a
also be used in the far zone of the reflector outside the ooXe

paraxial region. The numerical results in Fig. 11 based a Z .40m
on the UTD as obtained in [21] are compared with those 0.0303

based on GO (V - + Y ,, W" in the forward direction -

since Ir I for the feed employed in this example),
and with the commonly used but far less efficient aperture 0010
integration (Al) technique. It is noted that the GO reflected
field r is discontinuous in Fig. 11 as required by U, in s is 24 32 40 4 s6 64 72

(15). Also, the agreement between UTD and the reference I a-oi,

solution based on Al is quite good in that figure. Finally, 1- filtmtte.

it is noted that, for a small range of angles near the plane
of the reflector, one of the edges is always shadowed by Fig. 11. Near field radiation patterns of a parabolic reflector

the reflector geometry, and this shadow zone is filled by antenna (from [21]).

surface rays which are excited on the back (convex) side
of the reflector surface via edge diffraction, and these rays rays. The corner induced shadow boundaries of the edge
then shed energy tangentially as surface diffracted rays. A diffracted rays of course occur because such rays cease
whispering gallery type field can also be excited on the to exist whenever the edges terminate (at the corner). The
concave front side of the reflector via edge diffraction, general UTD form of the corner diffracted field is given by
Such edge excited surface diffracted rays [22]-[251, and
the diffraction of whispering gallery fields 126] occur in a - - __

small angular region and may generally be neglected to first Ec(P) - E-(Qc)" Dc - (17)
order without incurring serious errors. -- d (

4) UTD Corner (Vertex) Diffracted Field: Corners or ver- Hc(P) = x Ec(P). (18)

tices can occur if an edge is truncated, e.g., as in the case of
a plane angular sector, or a finite plate structure for which Recently, an approximate but useful UTD result for Dc has
the edge tangent is discontinuous (to form the corner), or been obtained for the case of the diffraction by a corner
as in the case of a pyramidal structure with planar facets in a perfectly conducting plane angular sector as shown
whose edges converge to a point; these specific examples in Fig. 12(a). The UTD transition function present in De,
are illustrated in Figs. 12(a) and (b). In addition, comers which compensates for the corner induced discontinuity in
or tips can also occur in a smooth conical geometry, as the edge diffracted fields may be viewed as an integral of a
shown in Fig. 12(c). When a corner in an impenetrable Fresnel integral that can be calculated quite efficiently. The
surface is illuminated by a source, then the incident my present more rigorously obtained UTD corner diffraction
is diffracted in all radial directions from the corner as coefficient in [271, [281 constitutes an improvement over
shown in Fig. 12. The UTD field of these corner diffracted a previous one which was constructed heuristically [29].
rays illustrated in Fig. 12(a) and (b) keeps the total high- Figure 13 indicates the far zone radiation pattern of a dipole
frequency field bounded and continuous across the corner antenna located near a perfectly conducting rectangular
induced shadow boundaries of rays diffracted by the edges, plate, which has been calculated via the new V, in [27],
just as the UTD edge diffracted fields keep the total high- [28]; this pattern is seen to compare very well with an
frequency field bounded and continuous across the edge independent moment method (MM) solution of an integral
induced shadow boundaries of the GO incident and reflected equation for the problem.
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I
Qc radius of curvature (except along the cone generator) as

d •the tip is approached. The UTD cone tip diffracted field3 must then contain information on this change in the nature

"of the surface ray field near the tip; such a general UTD
Q, solution has not yet been developed although some initial -

attempts have been made 1301. On the other hand, an
"-0X approximate UTD-type diffraction coefficient based on the

PO approximation has been developed for the problem of

(a) (b) EM plane wave diffraction by a fully illuminated semi-
infinite perfectly conducting cone [31], as illustrated in
Fig. 14(a); thus, the incident angle 0 measured from the
axial direction must remain less than the half cone angle
Oc (see Fig. 14(a)). This plane wave diffraction solution I
also provides the tip diffracted ray field which propagates

Q, along the generator of the cone to any point Q on the
surface. Let an electric current point source ft6(T- p) at a
distant point P produce this locally plane wave set of fields
Al•t, ) which are incident at Qc and Q. For convenience,

W€ Pt is directed perpendicular to the ray (or local plane wave) Il

Fig. 12. Examples of comer diffracted rays. incident at an angle 0; i.e., Pt = 9 or Pt = €, where 0 is
shown in Fig. 14(a). Also, let Pt produce the total field

(Et, Ht) at Q, where in the UTD sense,

Ft (Q) = r(Q) + r(Q) + T(Q) (19)
t(Q) = M(Q)+ r(Q)+ (20)

--d --d1with (E-t,H-) representing the cone tip diffracted fields
as given in [31]. The (Et(Q),Ht(Q)) at Q also directly

•lot, ! provides, via the reciprocity theorem, a knowledge of the 3So~s•.•.....• ifields (E(P);H7(P)) radiated to the far-zone point P by a

0. 5A point current source Pb6(F-fQ) at Q as in Fig. 14(b); thus,

j" Et (Q), if p = j where•j is the

strength of an electric

current point source at Q

1. 1 (21)
rt = -~~ -Hi,(Q), if j• = rti where rhi is the stegho amgei

IGenerally, the contribution from the cone tip diffraction""A' to the far field radiation by antennas on cones becomes

,negligible outside the paraxial region; this point will be

clarified later when dealing with radiation from antennas
ion a smooth convex surface.

5) UTD Ray Fields Associated with the Diffraction by
"1 s o to 60 t0 120 1SO ISO Smooth Convex Surfaces: UTD solutions for the prob-

9timmus) lems of diffraction by smooth, perfectly conducting convex

MIg 13. Radiation pattern of a dipole near a perfectly conducting surfaces are useful, for example, for predicting the EM
rectangular plate. (- UTD; - - - MM ; - - - UTD without scattering from aircraft fuselage shapes or ship masts when
comer diffracion tern). Note: = 47.5*. they are illuminated by airborne or shipboard antennas,

respectively, and also for predicting the EM radiation and
For the case in Fig. 12(c), there are no edge diffracted mutual coupling associated with antennas placed confor-

rays because the cone geometry is smooth (except at the tip) mally on smooth convex portions of an aircraft, missile or
and contains no edges; however, there are surface diffracted spacecraft, etc. Three separate cases are considered below. I
rays that are launched from the smooth portion of the a) Source and observation points off the smooth convex
conical surface. The nature of the surface diffracted rays surface: The UTD solution for the case when the source
changes rapidly as the surface rays on the cone approach (antenna) and observation points are both off the convex I
the cone tip because of the rapid decrease in the surface surface is obtained from a uniform asymptotic s',lution to

PAM& TECHNMMu FOR rNIMA ANALYSIS 53 1



function P8 ,h(•t) which is well tabulated [34], in which
St' = -2m(QR)cos0. Here 0 represents the incident angle
defined in Fig. 8, and m(QR) contains p,(QR) which is

_. -the surface radius of curvature in the plane of incidence at

0C QR. It is noted that P.,,h contains an integral of the Airy
functions [32], namely:

Pm) = 1• f V(T-) e-jbrdr (27a)
VT .~W2Tr)

(a) e_ -M(

where OF f. W2( dr

P

2jV(r) = W(0r) - W2(r) (28a)

-() l J. f [ert-t3/3 Idt. (28b)

Next, the field at PS in the shadow region is given by [32],I (b) [331
Fig. 14. Cone tip diffraction within the paraxial region (8 < 0,). E(P) ". E-d(ps)[l - U] (29)

the problem of EM scattering by a circular conducting where
cylinder [32], and it is given separately for the lit and
the shadow regions. The field at PL in the lit region is pd' s d (
associated with the incident and reflected ray paths asS~shown in Fig. 15(b) and it is given by

with one of the diffracted ray wavefront surface radii of
-(PL) _- r(PL)U + E tr(pL)U (22) curvatures, pd, shown in Fig. 15; likewise, the diffracted

pg• ray distance sd from Q2 to Ps is also shown in that figure.
where " is the GO incident field and Eg' is the generalized The dyadic transfer coefficient T is given as [321, [33]:
reflected field which contains surface diffraction effects (in

addition to the GO reflected field FU). The latter effects , ,- jk, (31Q
become significant only within the transition region near the T(QI, Q2) = [bib 2 •. f+ifl2hJ . i/(Q2) (31)
SSB shown in Fig. 3. The step function U in (22) serves

as an SSB indicator: in which dri(*) is the width of the surface ray tube (or strip)

U J 1, in the lit region which lies above the SSB at any point (.) along the surface ray path, and t equals
U 0, in the shadow region which lies below the SSB the arc length of the surface ray path from Q, to Q2. It

(23) is noted that the surface rays constitute geodesic paths on
The extent of the transition region around the SSB is of the convex surface. It is seen from (31) that T is expressed
order 1/(m(Qi)), where compactly in terms of orthogonal unit vectors (t. fi. b) fixed

rto,1 1/3 in the surface ray with i being a unit tangent to the surface
rn(e) = "2' (24) ray and h is a unit normal to the surface along the surface

ray, while b is the binormal vector (b = i x fi). Again, 1),

and p9(*) is the radius of curvature at any point (.) along and Vh both contain F as in (10) as well as P8 ,,(h). The
the surface ray. The field rr is expressed as 132], [33]: quantity t is sometimes referred to as the shadow Fock

parameter given by
_P2 C (25) M(t')

72m(PL) ""]]..(Q,,)" pW p'•+s ' • "eJ' q et)d,

withp(t'
R.&..Lki. + Rhe1 le. (26) The parameters f', t, X1 and Xd present in (26) and (31),

11' which are defined elsewhere in detail [32], [33], ensure

The unit vectors contained in (26), and the quantities pr 2 that the total UTD field is continuous across the SSB; i.e.,
and sr ire the same as those given previously in (5c). T(PL) in (22) and ,(Ps) in (29) are equal at the SSB.
The UTD functions R. and 'Rh in (26) are defined in It is noted that in the lit zone outside the SSB transition
[32), [33] and they contain two transition functions, namely re!ion, pgr - Er which is the usual GO reflected field (i.e.
the F function introduced in (10) as well as the Pekeris • -. as in (5)). Likewise, in the shadow zone outside the
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I
The electric field E(P) radiated by i5 at Q' can then be
expressed as

sn • E~~~(P) = =iPQ)•, il (35)
_ r(PIQ,).P, ifp =i

in which ri,, is obtained from uniform asymptotic solu-
tions to problems of radiation by P on conducting cylinders
and spheres [36].

(a) (-jk/47r) (b,,AfrP=P + i~bB + b~bC + i~fiD) (e( -. ?k )/•.,

(a) ~~~for P = PL iiTH

rm (-jk/47r)(b'hTl'H + t'T 2 S + b'bT3 S + ?h4

PL e-k y/(ý b/d/())pq(Q)/pq(Q')]116
S/pdl(sd(pd + 8 d)) exp(-jkSd),

for P = Ps
as*. Q(36)

Olt and2I
S1(-jkZ,/41r) (fi'M + i[N) (e]k IS),

for P = PL
(b) J (-jkZo/47r)(f 'iTsH + fi'bT6 S)

Fig. 15. Ray paths for scattering by a smooth convex surface. .eikt (diPo/dr/(Q))[(p,(Q)/p9(Q,))]'/ 6

-Vrpdl1(sd(pd "l"sd)ý)exp(--jkSd),
SSB transition region, V.,h -- T.,h, where T.,h is defined for P = Ps. d(37) -

as (37)
The field point P = PL in the lit region (where the source at
Q' is directly visible), and P = Ps in the shadow region.

N) ( f l2 t) ( ] Although the fields in (36) and (37) are given separately I
Dn= 1 ) .p _ n for P = PL and P = Ps, respectively, they join smoothly

at the shadow boundary SSB which is defined by a plane
(33) tangent to the surface at Q'. The quantities pd and sd are

shown in Fig. 15; also, dt7(Q) is the width of the surface ray

in which Ds,,(Q) is the Keller's (or GTD type) diffraction strip at Q. The dr7 was defined earlier in (31); furthermore,
coefficient for the nth surface ray mode which indicates do,, and dip are the angles subtended by the surface rayhow the surface modes are launched at Qi by the incident strip at Q' and at Q, respectively (e.g., dip is shown in Fig.

ray which grazes the surface [35]; by reciprocity, D1,h at 15) [36]. The unit vectors (?', V', ft') at Q' and (i, fi, b) at
Q2 indicateshow thesurfaeraymodesdetachfromthe Q are fixed in the surface ray from Q' to Q as in Fig. 16,

surface into the external medium. Similarly, a•h indicates and they have the same meaning as in Fig. 15. Similarly,

the rate of attenuation of the surface ray modes [351 due the unit vectors (ti, 6b) are fixed in the ray from Q'

to the continual tangential shedding of energy along the to PL such that t, fi, t' and fi' all lie in the plane of

surface ray. Thus the UTD result automatically recovers incidence (defined by 8 = (Q'PL)/(I Tii) and fi') and

the GTD result outside the SSB transition layer. fi " 8 = 0 = b' • 8 as shown in Fig. 16. The usual angle

b) Radiation by sources on a smooth convex surface: of incidence 0 = cos-'(ft' .i) defines the radiation angle -

Consider the radiation by a slot or a short thin wire measured from the fi' direction.

antenna on a smooth, perfectly conducting surface. A The quantities A, B, C, D, M and N in (36) and

UTD analysis of the radiation from these antennas can (37) for P = PL, and the quantities T, through T6 in

be constructed in terms of a uniformly asymptotic high- those equations for P = Ps are all defined in 136]; they a
frequency approximation to the dyadic Green's function, contain the special UTD transition functions g(e) and g(*) I
rai,m, which provides the radiation from a point electric (i) corresponding to the well tabulated radiation Fock functions

or magnetic (m) current source pb6(Y - FQ,) at Q' on the [34], [361 that are expressed in terms of an integral of Airy
convex boundary. functions.

71 = dre-36[W, (l)]- (38a)

=_{ for an electric point current source at Q' 1 d
, for a magnetic point current source at Q' ̀ (6) = -ej2(J. (38b)-

(34)
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RL direct generalization of (21) with = ):

~(P = j r(PI').[MS(Q')]ds' (39)

where M~s(Q') = !.(Q') x ih' is the equivalent magnetic
current in terms of the transmitting electric field Ea(Q') in
the slot aperture of area S.; this Ms replaces the aperture

a ,-l a. , Sa which is now short circuited. Likewise, the radiation
it X from a short thin monopole of height h and transmitting

boob| current I(1') fed at the base Q' on a convex surface can
be found as (361:

(a)(b) h-fri(PIQ')" fa�' 1(1')

F&g. 16. Unit vectors fixed in rays to PL and Ps from a source E(P) ,i_ cos(kl cQosO)dl', ifP=PL (40)
on a convex surface. fr(PýQ')" f' I(L')dl', if P = Ps.

Figure 17(a) indicates the far zone radiation pattern of
The argument 6 of the Fock functions is given by j = a short, thin monopole antenna on a spheroid, which is
-m(Q') cos 0 for P = PL, while it is given by the shadow calculated in the SSB plane (i.e. in the plane tangent to
Fock parameter = f•, (m(t')/p9(t'))dt' when P =s the spheroid at the base of the monopole) via UTD, and is
as defined previously in (32). shown to compare very well with measurements. Besides

Outside the SSB transition region, where ( < 0 and the constant lEo[ pattern which is the only component that
> 0 the UTD results in (36) and (37) automatically would exist in the SSB plane for a monopole on a sphere,

reduce to the GTD form; namely, A - 2, B + 2 cos 0, or on a finite or infinite flat ground plane, there is an
M -. 2 sin0 and (C, D, N) --+ 0 in (36) and (37) for additional (cross-polarized) IE0j component of the pattern
P = PL and C1 < 0, and similarly, the results for P = PS that is present for the spheroid because it has two different
and for • • 0 reduce to terms involving principal surface curvatures K1 and K 2 ; i.e., E, in the

N Q SSB plane of the spheroid results from the "launching"Z L"'h(Q')exp - ,(Q). of torsional surface rays by the monopole since torsion

n=1 JQ' is proportional to 1K1 - K 2 1. The present UTD solution
thus predicts the complex, surface dependent field and

In the latter sum, the LOh(Q') (which is proportional to polarization effects in the SSB transition region through the
Dn',h(Q')) is the launching coefficient at Q' of the nth explicit presence of torsion factors and the radiation Fock
surface ray mode, and DO,' (Q) is the nth surface ray mode functions in (36) and (37). It is noted that, even though
diffraction coefficient introduced earlier in (33). Within the Fock functions are utilized here, Fock's original work did
SSB transition region, the GTD launching and diffraction not contain effects of torsional surface rays. The far zone
mechanisms are no longer distinct; indeed, such a coupling UTD radiation pattern of a radial slot on a semi-infinite
between the launching and diffraction effects within the cone is seen to compare very well with an exact modal
transition region is naturally contained in the UTD results (eigenfunction) solution in Fig. 17(b). The effect of the tip
of (36) and (37) due to the presence of g(6 ) and §(6) in is ignored in Fig. 17(b); however, as pointed out earlier, this
those equations. effect is generally negligible outside the paraxial region.

The geodesic surface ray path from Q' to Q may be c) Mutual coupling between antennas on a convex surface:
torsional. A torsional path, is one for which b 6 b'; i.e., The UTD expressions for the EM fields (17(Q),-H(Q))
a torsional path is a nonplanar curve. It is noted that the at Q on a convex surface that are produced by a slot
geodesic surface ray paths are helices on convex cylinders, antenna, or a short and thin monopole antenna on the
and they are great circles on spheres; they can be found same surface, respectively, are given in detail in [37]; those
easily for developable surfaces, but they must be found analytical expressions have been obtained from the high-
numerically for more general surfaces such as spheroids, frequency solutions to the same canonical problems as for
etc. [36). Furthermore, for closed surfaces, rays that creep the radiation problem in part (b) above, and are presented
around or encircle such surfaces can also diffract (shed) only symbolically in (41) and (42), shown on the next
tangentially into the lit region. Generally, for electrically page.Expressions alternative to those in 1341 for the slot
large closed s.-.4aces the contribution from such encircling case are presented in [38]. _

rays is weak because of the continuous tangential shedding The UTD expressions for ree,eh,hCohh which occur in
of energy along such rays. £41) and (42) contain special transition functions U(() and

The result in (35) can be readily generalized to deal with V(C) [37], (381; these transition functions are expressed in
the radiation from a slot antenna on a convex surface [36]; terms of an integral containing a ratio of Airy functions, and
thus, the field radiated by a slot antenna becomes (via a they keep the above solutions valid in their SSB transition
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and (44) as described in [371, [38]. Figure 18 indicates the 1
F2g mutual coupling between a pair of slot antennas on a cone

to 09"sNUMcalculated via UTD [37); it is seen to compare very well 1
with an exact eigenfunction solution. The pattern in Fig. 18
results from the interference between the dominant surface

c orays and the tip diffracted Tay. The tip diffracted ray field I
0 L ",is calculated as described in [38].1

eThe UTD edge and convex surface diffraction solutions

discussed above are employed to predict the radiationpatterns of a TACAN monopole antenna mounted behIind

f 17. Radirtion patterns of antennas on perfectly conducting the canopy on the top side of an F-16 aircraft fuselage; the 1
s~toi& and cones (cow hlf angle 100).

Ep(Qr essi(QoQn) s(I')dl' for a monopole (41)
Santennas o anve x ss in (40) bu

and
r1u tualx fui]dp, fo a slot antenna cone

17(Q) ~ ° rih(QlQ') J as i (39) (2

calculaed via UTD 37]; itissent 37
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wi sign Fig. 20. Radiation from a 9 x 9 axial slot phased ar-
ray on a perfectly conducting conducting circular cylinder.
a = 5AWal = 0.114,\;a2 = 0.095A. Slot length = 0.686A;
slot width = 0.305A.

g o. 1, reflected rays exist, and it also fails at the caustic where

(SWMB, ,DVZSIC . M) it predicts a field singularity. Therefore, conventional GO
must be patched up by a uniform GO solution which not
only provides a bounded and smooth variation of the field

Fig. 19. Radiation pattern of monopole antenna on an F-16 fighter across the caustic, but which also automatically recovers the
aircraft (see [39]). real ray fields of GO on the lit region outside the caustic

transition layer, and which likewise recovers the "complex"
results are shown in Fig. 19 [39]. The UTD model of the ray field [41] outside the transition layer on the shadow
F-16 is built up from connecting spheroidal and flat plate side of the caustic (since "real" ray fields cannot exist
surfaces. The excellent comparison of these UTD results there). Such a uniform GO solution for the scattered fields
with measurements is also shown in that figure. ( i', ) is described in [14]; it is summarized below:

An application of the UTD solution for radiation and -/

mutual coupling associated with antennas on a convex -E(PL) , 27rje- rk6 [k-/ 3 Ai(-k 2 /(I)
surface is shown in Fig. 20 for predicting the radiation from
a 9 x 9 element dominant mode rectangular waveguide-fed +j½•t'Ujk-Ai'(-kiz) (45)

axial slot antenna phased array in a perfectly conducting I
cylinder; this array exhibits a cosine tapered distribution where Ai is an Airy function [13]-[15] given by
along both the axial and circumferential directions. The 1 r.o
cosine taper is realized incorporating the effects of mutual Ai(6) = 1 _dt exp(-(t 3 /3 + 6t))

coupling. Figure 20 shows the radiation pattern of this array _o

when it is phased to radiate in the 0 = 450, 40 = 450 and Ai' is its derivative. Furthermore,
direction [40].

6) Uniform Analysis of Reflection within Caustic Re-
giaos: Figure 6 illustrates a concave-convex surface of C/4 k [A(Q°) 7(Q°)
revolution which contains an inflection point along its = -9 ;t

generator; such a surface can occur in the design of shaped
subreflectors in dual reflector antenna systems. The feed, / ,G e,"
which is a source of a spherical wave, illuminates the
subreflector which is assumed to be in the far zone of the + , + 8

feed. The rays reflected from the subreflector form a smooth X(Q•) / -, / p,-T_ (Q) .RQb o Pl'b r •b e+jw/4

caustic surface of revolution. It is usually of interest to find 86P; + e[ P;b + 8

the fields scattered by the subreflector which then illuminate (46a)
the main reflector.

One can employ GO to find the rays reflected from the in which
subreflector as shown in Fig. 6. On the lit side of the caustic 6 1

there mae two real GO reflected rays that contribute to the j [(s + sb) + (s• + s)] (46b)

field at PL. However, conventional GO fails to predict a = 3 i+ (4
field at Ps on the shadow side of the caustic where no real 6 a a
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U
and from the edge diffracted ray tube illustrated in Fig. 9. The

.exp(_jksi,) idincidentat GTD/UTD expression for the asymptotic high-frequency
,b) ,S Q(,lb from the feed) " ray field is valid away from the edge (i.e., it is valid

S(6 outside the so-called edge boundary layer), and the proper
.(4d) behavior near the edge must be obtained from separate

It is noted that R in (46a) is the dyadic reflection considerations. On the other hand, if pd < 0 then the
coefficient as in (5). While (45) is given for the lit side, other diffracted ray caustic can occur in the external space
a similar expression exists for the shadow side, namely, surrounding the wedge v henev#r the observation point at

Pow.) , 2[-P k71/ 3 Ai(,L2/3(.) P is such that sd = jpi" and the expression for E (P) of
(P 2eJ [Ll3Ai(+1 3•°,) (8c) thus becomes singular and consequently fails at and

(- near this caustic; such a caustic can generally occur along
+ i'/2 Qok 2 / 3 Ai'(+k I()] . (47) the diffracted ray if the edge is curved or if the incident

wavefront is concave. For smooth caustics of diffracted
In (46d), the Q. and Qb correspond to the two "real" points rays one could use the expressions in (45) and (47) directly
of reflection on the surface as in Fig. 6; the parameters within the diffracted ray caustic region except that the 3
in (46b) and (46c) are defined in terms of Q. and Qb. reflected ray parameters present in (45) and (47) must now
The parameters in (47), for the shadow side, are defined in be replaced by the corresponding diffracted ray parameters.
terms of "complex" points of reflection Q,, and Qb,; these However, the use of the ECM in this case will yield the
complex points are determined by an analytical continuation same result as in (45) and (47) if the integrals present in
of the original surface into complex coordinate space [14], the ECM, which are defined later on, are evaluated using
[411. In practice, the subreflector in Fig. 6 is bounded by an a uniform asymptotic procedure. Furthermore, the ECM is
edge which then truncates the caustic surface in question. very useful for treating a point caustic of diffracted rays (as
The results in (45) and (47) are valid for observation points in Fig. 5 for a symmetric parabolic reflector with the feed
near the smooth portion of the caustic away from the at the focus); the uniform approximation of (45) and (47) is
caustic truncation and away from the second (or the other) not valid in regions at and near the intersection or proximity
caustic surface which also exists. Outside the given caustic of the two smooth caustic surfaces, nor where these two
transition region, (45) automatically recovers the GO result. caustic surfaces degenerate to form a single point caustic.

7) Multiple Ray Interactions: A diffracted ray which is The basic idea behind ECM may be understood as
incident on a discontinuity undergoes a second diffraction to follows. If ksd > 1 but sd <« lpd, then in the near zone 3
create a doubly diffracted ray. Likewise, doubly diffracted of the edge but sufficiently far from QE, the expression for
rays can produce triply and higher order multiply diffracted E-(P) in (8c) becomes:
rays. The effect of multiply diffracted rays is generally 

i-ad withquite weak and may be ignored in that case. However, -d(p) ,, -(QE)" D, S/ d <s jpdl/

one can easily assess the importance of the latter, because £S (sP Ed > (QE
leaving these out generally creates a discontinuity in the (48) U
field (much like GO exhibits discontinuities along GO ray Ci4n

shadow boundaries); if this discontinuity is significant then Clearly the field at P in (48) may be viewed as being

it is clear that the multiple interactions must be included produced by an appropriate equivalent line source tangent

to some order until the discontinuity becomes sufficiently to the curved edge at QE, because a line source field also 3
small. Finally, rays reflected and then diffracted (or vice exhibits an symptotic behavior of the type e-'k' '(sd)-1/2

versa) are of the same order as singly diffracted rays; thus as in (48) when ks d > 1, to describe a cylindrical wave

they must be generally included to keep all significant as illustrated in Fig. 5(b). Thus one can find the strengths

interactions to the same order of asymptotic approximation of equivalent electric (I) and magnetic (M) line currents

(in terms of inverse powers of k) [3]. Multiple interactions locally tangent to the edge (i.e., along l) at QE, which
within ray transition regions need to be treated with care generate the desired fields (E (P), H (P)). For a perfectly
(631. conducting edge, the equivalent line currents I and Al are

given by [ 16] I
B. ECM II(QE) -e'/4 V

An expression for the GTD/UTD edge diffracted field has kM(QE) sin Z0
been presented in (8c) above, namely, (,QE) k (9

r'() ~(QE* P ~.kI r(QE)D,,. } (49);p 
lre•.. f(QE.)D~hI

r•(P) - t i(QE)"-Ve sd( + Sd)e in which D,,•a have been indicated previously in (9)

This expression reveals that the edge diffracted field has a and are evaluated in (49) for a diffracted ray which lies
singularity at the edge where ad = 0; such a singularity on the Keller cone and in the caustic direction. Only if
results from the fact that the edge is a caustic of the the phase of r(QE) in (48) is uniform then does (48)
edge diffraction rays, and this caustic at QE is evident describe a "locally" cylindrical wave emanating from the
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edge as in Fig. 5(b). On the other hand, if the incident rays j= E- (P), where each term T.(P) is of the type in
strike the edge obliquely (so P.o 6 lr/2) then the phase (8c). The effect of truncating the limits of integration to the
of E'(QE) is not uniform, and neither does the phase of portion of the edge which is directly illuminated may create
I and M remain constant but instead contains a traveling spurious contributions; this aspect and possible remedies are
wave factor automatically through the presence of E(QE) discussed in [4]. It is noted that unlike tr - -rents, the I
in (49). In the latter case the diffracted field behavior in and M in (49), together with the , n of sinA/o
(48), and likewise the corresponding asymptotic line source to V/sin -#. sin #,', depend on the r; or observation
field behavior, ejksd ( 8d)-1/2, now describes a more general direction.
conical rather than a cylindrical wave. In the ECM, these The GTD-based ECM discussed above provides the dif-
conical waves thus locally simulate the Keller cones of fracted field contribution without ha,',-g to find the dif-
edge diffracted rays. Even though (8c) becomes singular fracted ray paths as in the G' •wever, the ECM
at diffracted ray caustics, the currents in (49) are defined requires an integration, which , I some special cases
and well behaved at every point along the curved edge, and can be evaluated in closed form, .,. which in general must
hence they can be incorporated within the radiation injteal be evaluated numerically. This ECM can be used to find the
to yield a bounded result for the total diffracted field EtotaI fields diffracted within the rear axial caustic region of the
at and near the caustic. Thus symmetric parabolic reflector of Fig. 5(a) as shown in Fig.

11. An analogous ECM application is to calculate the fields
-d , kZo [f? x Ix M6] in the rear axial caustic direction of a coaxial waveguide

() 4r fed aperture in a finite circular ground plane [43]. An ECM

e-jKR analysis of the radiation by an axial monopole on a circular- dl' (50) ground plane, and on a flat-backed cone may be found in

[9], and [44], respectively.
where Ris the vector from QE to P, and the integration The GTD-based ECM can also be employed to describe
is around the edge contour which produces the caustic of the fields diffracted by an offset fed parabolic reflector
diffracted rays. for those observation directions in which isolated points

It is noted that an edge diffracted ray exhibits the local of edge diffraction which move on the elliptic rim can
line source field variation of the type ejk(sd(d)-1/2 in (48) coalesce and thereby create a singularity in the conventional
only when D, is not range dependent; i.e., only when GTD calculation. In this case, the ECM integral could
one observes the edge diffracted field outside the edge asymptotically be expressed in terms of a parabolic cylinder
boundary layer and external to the incident and reflection function, thus providing an analytical result if desired.
boundary (ISB and RSB) transition regions where the In addition, the ECM can be employed in special cases
UTD reduces to GTD. This is true because the special to evaluate the fields at caustics of reflected rays, and of
ranje dependent Fresnel type UTD transition function F surface diffracted rays. Furthermore, it can be extended
in D, which is different from unity within the ISB and to treat the scattering by a class of interior waveguide
RSB transition regions, modifies the ejkd (3d)-1/2 type discontinuities. The equivalent currents for interior wave-
cylindrical or conical wave behavior within these transition guide regions are defined via the concept of modal ray
layers. Consequently, the GTD-based ECM remains valid fields which are found either exactly or asymptotically from
only if the edge diffracted ray caustic transition layer does the interior waveguide modes [45], [46]. The equivalent
not overlap with the ISB and RSB transition layers. currents I and M, which "replace" the interior structure,

The ECM is an outgrowth of some early work in [42] and asymptotically produce the same interior modal fields
which was later formulated in terms of the GTD in [16] as those created by the discontinuity via not only I and Al,
to yield (49). A heuristic modification to extend the use but also their images due to the effect of the waveguide
of De.,,c in (49), which are defined only on the Keller walls, have been developed in [46] to find the modal
cone, so that they can be approximately generalized to be reflection coefficients and the radiation by an incident
defined along radiation directions lying outside the Keller modal field associated with an open-ended semi-infinite
cone is provided in [17] by splitting the (sin 53)-1 factor parallel plate waveguide antenna geometry. Other related
in (49) as well as the one present in the De,,eh of (49), work may be found in [47H49]. An alternative approach in
symmetrically into v/sin fl" sin fo, where 0153 is the angle which only equivalent magnetic currents M are impressed
between the incident ray and i at QE, and f3, is the angle at the discontinuity and which radiate the desired fields
between the observation direction and ý at QE. If 0. = 0-', within interior (or exterior) regions in the "presence" of the
only then does the direction of radiation from I or M at QE interior waveguide geometry have been developed in [50],
coincide with the diffracted ray from QE that lies on the [51]; such an ECM-based approach, which does not require
Keller cone. Such a generalization involving a symmetric one to explicitly find the images of the equivalent sources
split is useful in that away from the caustic transition layer, and their fields, can treat a somewhat more general class
where the GTD is valid, it allows the integral in (50) to of waveguide discontinuities. Examples of the use of the
reduce asymptotically (i.e., for large radius of curvature of latter ECM for interior regions are illustrated for finding
the edge) to the expected GTD description [4,17] in terms of the modal reflection coefficients of a waveguide fed horn
a superposition of isolated edge diffracted ray contributions antenna in [50], and for an open-ended circular waveguide
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consequently, the GO current discontinuity at the geometric
""--_-shadow boundary on the smooth portion of a scatterer can

induce a spurious diffraction contribution to the PO integral.
Ways to remove such spurious effects are discussed in
[56]. Nevertheless, the PTD becomes particularly useful

-Ifor or patching up the GTD/UTD in regions where there
Ac Iýh Iis a confluence of reflected and/or diffracted ray causticI - transition regions with the GO (incident or reflected) ray

. shadow boundary transitions regions. It is recalled that *
S. 9: '- - the GTD-ECM-based approach also fails there. The PTD

electric field at an observation point P can be written as
1.0 2.o $. o)I.. -s i

" + EPTD (51a)
FIg. 21. Application of ECM to find the modal reflection coeffi- -5 -s -s
cient of open-ended circular waveguide and horn antennas. (Exact EPTD = Epo + Eu (51b)
Wiener-Hopf solution in: Weinsten, The Theory of Diffraction and
the Factorization Method, Golem Press, 1968.) where •' is the classical incident field from the primary 3

source radiating in the absence of any scattering structure,
aperture antenna in [51] as presented in Fig. 21. The ECM and EPTD is the PTD based asymptotic approximation to
based results in Fig. 21 are seen to compare extremely well the field scattered by the presence of the structure when
with exact Wiener-Hopf calculations. excited by the primary source. Unlike the incident GO I

More recently, the GTD-based ECM for edged bodies field ErUi which is discontinuous (see (4a)), the Ft in
has been formulated in [52] directly from the asymptotic (--a) is continuous everywhere. The E•TD is calculated
treatment of the integral representation for the canonical by superposing the physical optics contribution, -s
wedge diffraction problem , from which a set of slightly th e rUfim ts e osr ction, Eu a ( w

improved equivalent currents I and M can be identified. It the Ufimtsev correction, Ps as in (51b), where

may be remarked that the ECM concept is closely related -ss (?)to the incremental length diffraction coefficient (ILDC) •PO (P)=•JZ n, owf)

concept developed by Mitzner [531; a comparison of ILDC 4w VV -f'i't

and ECM is available in [541, [55]. "[+.".....je ds' (52)

--GO 
V I- I

C. PTD in which is (f') is the GO approximation to the current
As indicated in Section I, the PTD was developed by induced at any point f' on a perfectly conducting boundary

Ufimtsev [191 at about the same time Keller developed excited by a primary source (the source of r). The
the GTD. The PTD serves to correct PO, while GTD boundary may be a host structure for an antenna which
provides a correction to GO. Thus the PTD field is a serves as a primary source, or, the primary source could be
superposition of the PO field and its correction which is a feed antenna for a reflecting boundary (e.g., a parabolic
the so-called "edge wave field." The PO field is produced reflector). Thus -- GO(f') = fr' x -
by the GO approximation for the currents induced on the on the part of the boundary surface Slit which is directly U
radiating object, whereas the edge wave field is produced illuminated by the primary source, and---°= 0 elsewhere I
by the diffracted component of the current on the radiat-
ing object. Sine GTD/UTD is the sum ot• the GO and (i.e., in the shadow region) on the boundary. Here, H?(f')Ui

diffracted ray fields, it is not surprising that if the PTD and H-(f')Ur are the incident and reflected GO compo- U
radiation integrals (i.e., the PO integral plus the integral nents of the magnetic field at K'. The position vector to the

over the diffracted current component) are evaluated using observation point is f, and ft' is the unit outward normal

high-frequency asymptotics then the PT) reduces to the vector to the boundary at f'. It appears that Ufimtsev found

GTD. Furthermore, when the asymptotics is performed in Is indirectly in his original work [19]. If the PTD integrals *
a uniform fashion, the PTD can recover the UTD. Clearly, in (51), (52) are approximated asymptotically, then
therefore, the PT! can be employed to patch up GTD/UT! ( U , +T)
in regions where GTD/UTD and even the GTD-based P '(1 - U,) + r(QE)
ECM fails. Elsewhere, the GTD/U and the GTD-ECM 0o" p

ECM ~ ~ ~ ~ ~ ~ ~ ~ ~ P fal.EsweehT/1T n h T-C ' e~k (53)become applicable and are expected to be far more efficient e sd(p- + 3d)

than the PTD which generally requires the evaluation of
PO integrals over an electrically large radiating object. and • (p) can be expressed as I
Furthermore, multiple wave interactions can generally be

accounted for in a straightforward fashion using the GTD 0-) ;

ray technique, which is not true for the PTD. Also, the PTD ! (P) ,, r(QE)" U V7ev __ (54)-*
has been developed only for an edge at the present time; d
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=PO
where D. is identified as a PO based edge diffraction co- ,

efficient, and D, is a Ufimtsev edge diffraction coefficient. p
Actually, there can be several edge diffraction contributions
to (51) and (52); however, only a single such contribution is "

indicated in (53) for convenience. It is interesting to observe Ajtthat [17], [571
-.. O __O

D, +D, = D, (55)

as one might expect. Equation (55) essentially illustrates
the connection between PTD and GTD/UTD. Following-_-PO _U Fig. 22. Integration coordinates on the wedge.
(9), one can also express D, and D, as

7__' -roiDe 0 (=, ' ;/r3) where the coordinate or is along the Keller cone of diffractedD,6 = es

- ,'ýDp , 4)'; 1o) (56a) rays on the surface. The coordinates r, o, and ,7 are shown
==U in Fig. 22; it is noted that ÷ = ý = unit edge tangentD, = -/or0 DU,(0, €'; %) vector, and ý ± -. The integral in (59) together with (60)

- O'ODU (0, 0'; Oo). (56b) may be evaluated asymptotically in closed form along theo, coordinate, thereby leaving a line integral along the r
The De essentially describes Ufimtsev's edge (fringe) variable (i.e., along the edge contour as in (57)) that yields

-- s a PTD based ECM interpretation (analogous to (57)) from
wave diffraction pattern. While Ufimtsev found Eu via a mor b ed inerpretaon (analgus to (5) fromindiectconsdertion it [19, oe cold n rerosect which a more refined set of equivalent currents 1Us and ML'in d ire c t c o n s id e ra tio n s in [1 9 ], o n e c o u ld in re tro s p e c tth n t o e i ( 5 ) c n b i d t f e .I t s n t d t at nl t e
employ an approximate procedure following the GTD- than those in (58) can be identified. It is noted that only thebased ECM ideas contained in (49) and •50), as well as dominant range dependent terms may be retained in (52)
in the discussion below (50), to obtain aE; thus and (59) which result from the VV operation therein; theremaining higher order range terms may be neglected as

SjkZ0  ? x A x usual for kli - f'I > 1.
0 ( The PTD can also be employed to deal with apertures. In

e-ikR this case, the PO concepts may be extended so that the PO
R dl (57) type contribution can be found from the GO fields in the

where the Ufimtsev type equivalent currents P' and MU ap,.rture; such a PO integral over the aperture is commonly
inw(57)are g piv at c t areferred to as the aperture integral (AI) when it is appliedSin (57) are given by to horn and reflector antennas. An appropriate Ufimtsev

IU(QE) correction Eu may then be added to EAI (corresponding

M" (QE) Jto the Al contribution which acts like the PO contribution).-S5

e 4 87r ~It is noted that TEpo, or EAI for aperture problems, is
__-__/___ 8{Z/ }e Ygenerally far more significant than the Ufimtsev correctionsi sin, Zs

EU in the region corresponding to the main beam, as for
' esin3osin") example in the case of horn and reflector antennas.

[ "'(QE)D~'h(4, 4'; v/sin/3o sin i') Figure 23 illustrates the far zone E plane radiation pattern
(58) of a symmetric parabolic reflector fed at the focus, with four

symmetric struts holding the feed; this pattern has been
Recently, a new formulation of the PTD was presented in calculated in [58] using Al up to 60 away from the main
(20) for directly calculating the fringe wave contribution ba xsadsicigt T eod6 ecp o h

pertaining to the scalar (acoustic) case. Those ideas in [20] beao axis and switching to UTD beyond 6 (except for the
-S use of GTD-based ECM to patch up GTD in the rear axial

can be directly extended here to find Eu for the vector EM caustic direction at 0 = 1800). The Ufimtsev correction tocase; thus Al is negligible in Fig. 23 which shows that the Al alone

fs _ r7+(59] e-j)lf-'l compares very well with measurements. The diameter of the-- S~~~v~p),,•~ -1i;4__ -4•) •+• • •[ conducting struts is 0.84 in and the scattering from these

(59) struts is found by using a wire diffraction coefficient in con-

since Eu is radiated by the component of the current which junction with ECM as described in (581. Figure 24 shows
is produced by the edge diffracted field on the surface of the far zone E plane radiation pattern of a pyramidal horn
the scatterer; this diffracted component of the current is calculated in [59] using the Al technique to 300 away from
denoted by 7 4(e') in (59). According to [20], the main beam axis, and the GTD-based ECM beyond 300.

drdar Measured results are also shown for comparison in Fig. 24
d8' = (60) from which it can be again seen that the Ufimtsev correction

IJvu I to Al is negligible in this case. The Ufimtsev correction to
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0 K- ArsmEo simple as well as versatile in being able to predict the
S-t0 L- HEradiation patterns, mutual coupling and other effects associ-

"-201 - PAT 4.5 ated with a large variety of practical antenna configurations.

S-go! X However, as also seen from Section II, the use of GTD/JTD
technique requires a knowledge of the relevant diffraction-40 coefficients; therefore, while several diffraction mecha- iS-50
nisms can presently be characterized by UTD coefficients,

-60 _mmore UTD coefficients need to be developed to solve a
I greater variety of antenna problems which are relevant to

-n 401 Igo 60 60 30 0 0 60 90 Ito ,5 present and future EM technology. Some UTD coefficients fl
9 (DE•REES) which are known only approximately at present need to be

refined in some cases; others need to be found for additional
(a) perfectly conducting as well as nonconducting (and even

penetrable) canonical structures. Some work in the latter
o__ _case which is available in [60], [61] needs to be developed

cALCULATED further; such work would be useful, for example, to predict U
O --PLAN

SPATT~EN the reduction in coupling between antennas on a metal
-to surface by introducing a lossy (absorbing) material patch

placed between the pair of antennas, or to predict the effects
-40 !of the canopy of private aircraft, or helicopters, on the

-so5 antennas located on such structures, etc. The PTD likewise
Zl _0 needs to be formally extended to deal with nonconducting

• -70 surfaces and to smooth surfaces without edges, etc. Not
" discussed in this paper are spectral techniques which can ben ,so 120 90 60 30 0 30 t0 to In ISO ISO used in conjunction with high-frequency approximations to

9 (DEGREES) deal with complex (nonray optical) illumination of the host

(b) .structure by the primary source (antenna) [62], [631. Finally,
Fig. 23 Measured and calculated E plane patterns of a symmetric hybrid procedures which combine high and low frequency
parabolic reflector antenna at 11 GHz. (a) Measured. (b) Calculated(see [58]). techniques [66], and the Gaussian beam techniques have

also not been discussed here due to space limitations. 3
Different aspects of ray and Gaussian beam methods have
appeared previously as a collection of papers in [65]; the

98o l7.S" latter also contains a paper by Borovikov and Kinber, which
0#;-a 6.V in turn provides a large bibliography of Soviet papers onAt a 13.77,\k
J"saI1.3. t high-frequency techniques. The hybrid procedures as well

w 8o.7s. as the Gaussian beam techniques appear to hold promise
to solve some high-frequency EM antenna and scattering

W t problems which may otherwise become intractable. I
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On The Dyadic Green's Function For a Planar
Multilayered Dielectric/Magnetic Media

Sina Barkeshli, Member, IEEE, and P. H. Pathak, Fellow, IEEE

Absrct--A complete plane wave spectral eigenfunction ex- I
pansion of the electric dyadic Green's function for a planar
multilayered dielectric/magnetic media is given in terms of a (aN, eN)pair of the Wf-propagatlng solenoidal eigentunctions, where N N
i() is normal to the interface, and it is developed via a utiliza-
don of the Lorentz reciprocity theorem. This expansion also Z
contains an explicit dyadic delta function term which is re-
quired for completeness at the source point. Some useful con- (pm, t) Ew(r)
cepts such as the effective plane wave reflection and transmis-
sdon goefficients are employed in the present spectral domain
eilgenfunction expansion. The salient features of this Green's
function are also described along with a physical Interprets- S>
dion.

(poeo J OWr)

I. INTRODUCTION 
2i

A COMPLETE plane wave spectral (PWS) type eigen-]r
function expansion of the electric dyadic Green's

function for the planar multilayered dielectric/magnetic
media is given in this paper in terms of a pair of the (f)- "( ,-..)
directed solenoidal eigenfunctions, where (2) is normal to
the interface, and it is developed via a utilization of the
Lorentz reciprocity theorem. This expansion also con-
tains an explicit dyadic delta function term which is re- 0
quired for making the representation complete at the
source point. The geometry of this problem is shown in Fig. I. Electric point current dipole source in a multi-layered dielectric/
Fig. 1. The electrical parameters in each of the layers are magnetic media. Also the planar surfaces S, and S, slightly above andFig.1. he lectica paameers n ech f th laersare below the source are shown.

assumed to be homogeneous and isotropic. It is shown

that the field at a given point consists of four distinct wave
types (two for each TE and TM type) caused by the pres- tion of the dyadic Green's function for this canonical
ence of the multilayered media. This dyadic Green's problem may be constructed in several ways. One of the
function is useful in many problems dealing with the strat- most common approaches is to express the Green's func-
ified media, i.e., scattering from buried objects in the lay- tion in terms of a magnetic vector potential [1]-[5],
ered earth, or in the design of high performance finite whereas another approach is to construct the Green's
phased arrays in multilayered dielectric/magnetic envi- function from a set of appropriate electric and magnetic
ronment. Since the dyadic Green's function derived here vector potentials [6]-[101, [21]. In the former case, the
is for an arbitrarily oriented current point source, it can magnetic vector potential in general has components
also be utilized for the applications where the current ele- which are parallel and normal to the interface even if the
ments are obliquely rather than horizontally or vertically electric point current source does not possess a compo-
oriented with respect to the planar interfaces. nent which is normal to the interface. In the other ap-

The plane wave spectrum (PWS) integral representa- proach, the magnetic and electric vector potentials are
generally chosen so that they are both normal to the in-
terface. If the electric point current source is chosen nor-

Manuscript received March 7, 1990; revised May 29, 1991. This work mal to the interface, then the two approaches become
wa supported in part by the Joint Services Electronics Program. Contract
N00014-7"-C-0049 and the Ohio State University Research Foundation. identical since only a single normally directed magnetic

S. Barkeshli is with Sabbagh Associates. Inc., 4639 Momingside Drive. vector potential suffices in this case. This is related to the
Bloomington, IN 47401. fact that the normally oriented current moment only ex-

P. H. Patha, is with the ElectroScience Laboratory, Department of Elec-
ical Engineerinlg. The Ohio State University, Columbus, OH 43212. cites the TM waves (with respect to the (t)-coordinate di-
"IEEEE Logl Number 9102812. rection), whereas the electric current moment parallel to
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the interface excites both TM and TE waves. Therefore delta function term at the source point is included explic-
the total electromagnetic waves must be constructed either itly as a correction to the general solenoidal eigenfunction
with the magnetic vector potential which can produce both expansion which is valid outside the source point. The
TM and TE waves (in this case magnetic vector potential electric dyadic Green's components given in this work ap-
must have components normal and parallel to the inter- pear to be closely related to those electric field compo-
face) in order to satisfy the appropriate boundary condi- nents which have been derived by Kong 17], [81, and Chew
tions, or with the magnetic and electric vector potentials [211 utilizing the usual boundary conditions at each of the
which are both normal to the interface (since a normally interfaces and the proper condition at the source point. As
directed magnetic vector potential produces TM waves indicated above, the procedure used here is somewhat dif- I
and a normally directed electric vector potential produces ferent, in that we have utilized the orthogonality of con-
TE waves). One of the main advantages of the latter for- tinuous eigenmodes at the planar interfaces along with the
mulation is that the boundary conditions associated with Lorentz reciprocity theorem to drive the complete eigen-
the differential operators for the two different types of function expansion of the electric dyadic Green's function
vector potentials can be decoupled. In the case of a choice which contains a physical interpretation.
of a single type of magnetic vector potential containing The format of the paper is as follows. In Section II, we
both a vertical (2) and a horizontal (transverse) to (Q) com- outline the procedure required to derive the complete ei- I
ponent, the transverse component (parallel to interface) genfunction expansion of the dyadic Green's function for
of that magnetic vector potential will contribute to both the multilayered media, 9n. 0 , in terms of only the sole-
TE and TM waves; therefore, the boundary conditions for noidal eigenfunctions. In Section III, we start with the un-
normal and transverse potential components will be cou- bounded case, in which the point source radiates with no
pled. This disadvantage will be more pronounced if one interface present, and construct the corresponding dyadic
deals with the stratified or multilayer dielectric/magnetic Green's function, go, in terms of an integral over the
media, for which the number of coupled boundary con- spectra of plane waves that constitute the continuous ei-
ditions increase, thereby complicating the analysis. Re- genfunction expansion in which the eigenfunctions are
cently Bagby and Nyquist [11], derived a formal repre- guided in the preferred t-coordinate direction, using the
sentation of the dyadic Green's function for the procedure described in Section II. This is essentially the I
multilayered media in terms of the magnetic vector poten- z-propagation (plane wave spectrum) representation of the
tial [11, [41, which they specialized for the cases of mi- free space dyadic Green's function which is usually rep-
crostrip and optical circuit structures. Since only the mag- resented by the discrete spherical vector wave type radi-
netic vector potential is used, the boundary conditions for ally propagating eigenfunction expansion. In Section IV,
the TM and TE waves are coupled in I II], hence, the the dyadic Green's function for the multilayered media,
natural distinction between the two is lost. Also the dyadic gi,. 0 , is then constructed from the principle of the super-
delta function term, which makes the representation corn- position, which involves the sum of the fields of firstly Iplete at the source point, was not explicitly extracted in the source in free space (or the free space Green's func-

I11]; Viola and Nyquist [121, slightly modified that anal- tion gL) and secondly the fields scattered by the layered
ysis later to properly extract the dyadic delta function media. Section V deals with the physical interpretation of I
term. In the present work, we have derived a complete the dyadic Green's function and numerical results. Con-
eigenfunction expansion of the dyadic Green's function clusions and discussions are presented in Section VI.
for the planar multilayered dielectric/magnetic media us-
ing the (t)-directed solenoidal electric and magnetic (TM 11. FORMULATION OF gi. IN TERMS OF THE

and TE) eigenfunctions. We have used continuous eigen- SOLENOI GEN.0 - TIONS
modes propagating along a "preferred" (t)-direction. We SOLENOIDAL EiGENFU'CTIONS
have also employed the orthogonality properties of the el- In this section we outline a general procedure described
genmodes over an open planar surface 16] transverse to by Pathak, [14], which can also be employed to find a

the direction of the propagation, (t) to construct our complete eigenfunction expansion of the electric field in
Green's dyadic. This is a generalization of the discrete the multilayered media, E,,, and its corresponding dyadic
eigenvalues and eigenmodes, that is usually used in the analog 9in. 0 in terms of only the solenoidal eigenfunc-
guided wave theory [ 13). Hence, unlike the work reported tions.
previously, this analysis retains the connection between The usual Maxwell curl equations for the electric and
the closed (waveguides) and open (planar multilayer) type magnetic fields E. and H. within any mth layer (see Fig.
structure, which is usually lost in the formal Fourier 1), respectively, are given by
transform method. In addition, because those eigenvalues
and eigenmodes are only a function of the geometry of V x E = -jWIAmH.; V x H,. = jw(EmE. + Jo. (1) I
structure, and not the excitation [61, [131, the natural (TM
and TE) eigenmodes reveal the physical behavior of the An ej' time dependence is assumed and suppressed in
fields in the multi-layered dielectric/magnetic media. Fi- (1), and as usual, u,, and em are the permeability and per-
nally, we have employed a method that utilizes only the mittivity of the medium (m), and J' is the impressed elec-
solenoidal eigenfunctions 114], and hence, the dyadic tric current source. If the electric current density Jo is I
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taken to be a point source of strength p, at r = r' in the Jo = p, 6(p - p') 6(z - z') = P, 6(r - r')
region (0); then,--- p°, 6(z - z '). (8)

-. -( Now the discontinuity of the tangential magnetic field in
Before proceeding further, it is important to relate the the region (0), across S (at z = z') must be equal to theI dyadic Green's function to the electric field due to J0 as surface current density at S; namely,

[15] fx(H - Ho)= , "P., (9)

E,.(r) = -jwpo 9'`0'(r, r")' Jo(r") dv", (3) where I, denotes the transverse part of the unit dyad with
' ~"respect to f,

where g,.0 is the multilayered electric dyadic Green's = + a, I, = it + j•.f. (10)
function, and v contains the source region. If J 0 (r") is an
arbitrarily oriented point current source of the strength p. It is clear that (9) is valid only at z = z', so it can be
given in (2), then electric field may be viewed as a distri- expressed as
bution; namely, x (H' - H) (z - z') ip,, b(z - z'), (11)

Em(r) = -jwaiogo°(r, r') • pe. (4) it follows directly from (8) that the above equation be-

Let the solenoidal part of the eigenfunction expansion of comesI the electric field E, which is valid for z * z' (and hence f x (H' - H") B(z - z') = p, p, 6(r - r'),
for r * r'), be denoted by E.. The field E' is obtainedM or more generally,
in terms of only the solenoidal eigenfunctions because the
electric field has zero divergence for z * z'. The z-prop- f x (H,> - H,") (z - z') = I, - p, 6(r - r'). (12)
agating solenoidal eigenfunction expansion of E,, can be This is the expression for the condition on H at the source
expressed as

point, and it directly indicates the appropriate addition to
E>, z > z' Em, at the source point which is required to yield the com-

SEm, =• (5) plete expansion of E.,. It is important to note that since
- ,<, Z < Z'. the discontinuity condition in (12) relates H,> to H<

across the source point, one only needs to know

SAlternatively, EL in (5) can be written as H,m and H,. to completely specify H,. due to the source
E.', = %l(z - z')E > + 111(z' - z)E <, (6) Jo = P, 6(r - r'); thus

H,, = %(z - z)H> + %(z' - z)H<. (13)where the Heaviside unit step function 'I(t) is defined by, T he -o t(6 c n be redly f by employing
The E.+ of (6) can now be readily found by employing

> 0 (7), and using the relation based on distribution theory,

V X [H,'"t(+z T- z')] = 'U(±z - z')V x H•,
I and X means the fields for z - z'. The entire space con-

sists oftwoaregionsz > z'andz < z'; z = z'is the plane ± • x H 6(z - z'). (14)
S (normal to f-axis) containing the source, Jo = p, 6(p - From (7), (12) and (14), if follows thatUp') 6(z - z'), in region (0) of Fig. 1. It is noted that (po,
t0) correspond to the constitutive parameters of the me- E V

dium in region (0); in general, (/g0, e0) are different from = "- j0
those for free space. Consider next the magnetic field H,.
due to Jo; in particular making use of (5), yields The precise relationship between the complete field E. of

(4) and the incomplete field E,, of (15) can now be written
V x mE" = -jwjs.H"; V X HM = jwemE,`, (7) by using (1) and (10), [14],

where H' is the value of the magnetic field H. in the Em(r,r')=E'(r,r')-jwpo[-- (r-r)

region (m), for z X z'. It is clear from (7) that the mag- [ko
netic field H" is known once E" is known. The fields . =
H> and H< must satisfy the proper source condition at " (
r - r'. In order to impose the boundary condition at the The Green's dyadic g!.0 can be inferred from (16) by

source point, r = r', the volume current density Jo must comparison with (4). Thus,
be expressed in terms of a distribution p,, corresponding
touacrenrce o u- ."to a "surface" current density at z = z' (i.e., on the sur- (r r) (r, r') - 6 6(r - r'), (17)face S); thus 

'
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with where, V, is the transverse (to 2) part of the V operator.
r'a -jw "0(r, r') p, (18) Electric and magnetic potentials, 11' and II ", which can

E,(r, r') - also be viewed as a pair of Debye potentials [51, [171 sat-

From the above discussion, it is clear that one can also isfy the well known Helmholtz equation; their associated
construct the complete free space dyadic Green's func- 2-propagating eigenfunctions can be expressed as
tion, go, in terms of the "z-propagating" solenoidal ei- I
genfunctions which will be obtained in the following sec- II (k,) = - exp[-j±(k, -P ± Yoz)];
tion.2-

I1l. CONSTRUCTION OF THE FREE SPACE DYADIC 'm(-k,) = 2v exp[-j(-k, • § ± -- oz)]; (23)
GREEN'S FUNCTION, go

In this section, the procedure outlined in the previous where prime (') and double prime (") have been omitted
section is applied to obtain an explicit expansion for go for convenience; k,, K0, and i are respectively defined as U
which is associated with an electric point current source, k, = Ak, + .ky; k, -- = •,/t; Ko = vrk• -k,, (24)
Jo = p, 6(r - r'), which radiates in an unbounded me-
dium with parameter (;&, e0) which are the same as in and
region (0) with no interface present. In the following sec- p = tx + 1y; r2+z; k= - 2,Aofo. (25)
tion, the procedure developed here will be extended to

explicitly obtain the dyadic Green's function gin. 0 of (17) In the above formulation, the variable k, (i.e., .tkx + Sky;
for the multilayered media. The first step in the procedure dk, = dkx dky) are the continuous eigenvalues which span I
for obtaining the free space electric field E0 and its cor- over the entire spectral domain (-00 < k, < oo; and -Gc
responding g0 involves the construction of a z-propagat- < ky < o0). The unknown spectral amplitudes a ' and
ing PWS solenoidal eigenfunction expansion of E6 which at of (20) associated with the TM and TE modal fields
is complete if z * z'. respectively, are found from an application of the Lorentz

The geometry of the problem dealing with a homoge- reciprocity theorem to the pair of the fields (E ", H ' ) of
neous (free) space with constitutive parameters (;&, eo) (20) and the source free solenoidal vector wavefunctions
excited by Jo = p, 6(r - r') is illustrated in Fig. 2. The (e ", h *) in the region V0, bounded by planar surfaces S>
solenoidal eigenfunctions for this problem are chosen to and S<, which are slightly above and below the surface S
propagate in the preferred ±i-coordinate direction. The of Fig. 2, respectively, [13], [14]':
source point at r = r' lies in the plane Sat z = z' as in I
Fig. 2. Let E' and Hm denote the continuous PWS so- ds • (E × hx A e* x H)
lenoidal vector wave function expansions for the electric S> + s<
and magnetic fields, due to J0 in the absence of the inter-
face; thus, = Ufl dve J°

El = Elm + E"'; Hx = H'm + H"m, (19)

and [6], = es . pI. (26)

E" = ' dk, (a'me' + a"elar); The solenoidal vector wavefunctions e " and hA satisfy m
the orthogonality condition on the surface S< and S>;

H% = dk, (a'm hm + a "hmh ), (20) namely,

where prime (') and double prime (") refer to TM and TE i ds' (e<(±k,) x h> (:F k;))
wave components with respect to the preferred 2-coordi- S.
nate direction, respectively, and h' and e" can be derived
from the solenoidal magnetic and electric t-directed vec- = ds • (-e >(±k,) x A <(:Fk;))
tor potentials, (H1', n "), respectively [61, [13], Si

h" :T- x VIi't ; = (I • t)11 (kt - k;), (27)
IvaIra : I:_ ,(21) where 0 can be 0' or D" for the TM and TE cases, re- I

JwEo 8z JIa3eo spectively; thus,

0' = k " 11,; (28)

oal - X '7tvom ; !0

hog . V . 1t " - -_ __L. * 1H"A, (22) 'we apply the Lorentz reciprocity theorem to the volume V0 here with
AJoAO Z Jojpo the radiation condition implied as p -.

I
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IP

I z

0 X

Fig. 2. Imaginary plane S, parallel to xy plane, passing through the source at z - z' in the free space. Also plotted are planar
surfaces S> and S, slightly above and below the source.

with the unit vector it directed along the outward normal dyadic Green's function for the multilayered media, which
to the surface S,, = ± z; and t,1 and -90 are associated with will be discussed in the following section.
the TM and TE wave impedances for region (0) and de-
fined as

IV. CONSTRUCTION OF THE MULTILAYERED DYADIC

-; = 'o ; _-0 (29) GREEN'S FUNCTION, !-.0
"*0' K0 The electric dyadic Green's function for the multilay-

ered media can be expressed as a sum of go in (32) and
Incorporating (20) and (27) into (26) yields another contribution to account for the field scattered by

(-k, r') P r' = +(30) the layered media. The scattered contribution can be ex-

a --- + z'. (30) pressed in terms of a PWS integral resembling that for g.
Let us consider an arbitrarily oriented point dipole source
in a general multilayered media with constitutive param-

beIn deriving the orthogonality relationship of (27), use has eters p,. and e., as shown in Fig. 1. The source is located
been made of

in region (0) with constitutive parameters go and c0. In
---- t--order to find the explicit value of the fields in each region,

S re = 6(k - E '). (31) one can write the field quantities as the superposition of
2-w7 the four traveling waves (two oppositely traveling waves

for each mode) with unknown coefficients and then solve
Therefore, from (30), (20), (16), (6), and (4), the z-prop- for the unknown coefficients by enforcing the continuity
agation PWS representation of the free space dyadic of tangential electromagnetic fields quantities at each in-Green's function can be identified as terface, [7], [8], [21]. However, we pursue another ap-

proach, which provides a useful physical interpretation
0- z') 01 (e `(k,, r)e'<(-k,, r') for the dyadic Green's function. From (2 1) and (22), one

- --jA-po d -20' can see that the continuity of the tangential field quantities

at the interface m imply
+ e P>k, r)e <(-k,, r') ],

-2;" r -1)_ i = I,.,; I ± ,_ (33).. _, az C..az
+ 9 -4zZ) d '(k,, r)e'>(-k,, r') and

-Jwpo -20l'

"e<(k, r)e>(-k,, r) II11_,=I ; --- Ii 1=---If. (34)+ -ý -O r - 0'. a., z it. az

/ 0  These boundary conditions are analogous to the continu-

(32) ity of the current and voltage at each discontinuity of a
piecewise uniform transmission line for which the char-

- The PWS for the fields (E0 and Ho) due to p, in free acteristic impedance (and the wave number) is defined inI space, and hence for the corresponding free space dyadic each layer as, (6], [9]
Green's function go given above provides information on
the general form of the PWS solution for the fields E, and K, = ._.; ,, = ., (35)
H. for the multilayered case and therefore also on the (AM, K(

I
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where prime (') and double prime (") are associated with where (&f, 3C) are given by

TM: and TE, cases respectively, and K, = kj 7-0,, 9is &' = el, + R*(O)e0 ; 3CX = ho' + R•(Oh,
the wave number in the f-direction. 

0

The field quantities in region m can be expressed as a and
superposition of known continuous solenoidal eigenfunc-with he unnown R0-(0) = R00(z T )e~lj.z* 03)

tions that propagate in ±+-direction with the unknown o (39)

spectral weights, am, [9] The solenoidal vector functions (& o', 3X O) satisfy the or-
thogonality relationship on the planar surface of S. as is

Eft dk,(a'`(e'ft + R'(0)e,') evident from (27),0U
+a."'(e,7 + Rmt e") ds -(&4(±k,) x 3c`(Q-k) - &(T,

Ma* AI'~"+Rf Oho
= dk (a"(hm + R[, (0)hM) x X0 (±k:)) = (Ix • f)2A 6(k, - kl), (40)

a+ 11 (hz + R." 1(0)h,)), (36) with

where R, (0) = R` e " 2 .. =, R., and R•U are the TM, A = fl(I - R'(z')R•(z)e-'-2"d), (41)
U0

and TE effective reflection coefficients at the interfaces where do = zo" - zo is the thickness of the slab 0;
(m, m + 1) and (m, m - 1) for (>) and (<), respectively z4 and z•" are the values of z at the interfaces of region
[7], [8], [18], [19], [21]. As discussed in the Appendix, (0) and they are specified in Fig. 1, and 0 is given in (28).
the effective reflection coefficient R' for region m, is a Incorporating (36) and (40) into (38) yields i

function of reflection coefficients of all successive layers,
(i.e., m ± 1, m ± 2, m ± 3,•• ,; (•_<)) of the mul- a -= _ _ r') -p

tilayered media, (in particular see (A 13) and (A 14)). Also a0  -2A (42)

the modal coefficients a:. of region m, and a,' of region The prime (') and double prime (") have been omitted for
n on either side of the source are related via the effective convenience in (37)-(42). Hence, the electric dyadic
transmission coefficient, T.,, as is evident from the Green's function for the multilayered media, Gi.0 can
piece-wise transmission line theory discussed in the Ap- be written via (42), (39), (37), (36), (16) and (4) as

pendix. In view of (All), (A12), (A16), (21) and (22),
one will have 2  gm.'(r, r') . .(Z - Z') dk,

Mall= •"j(K`•-x`•)E =m,.-an=,; -~Ja0

o~a of> &`•(k,, r)&0"(-k,, r')
m~nn ' nT'xM

nm .9M,0 -2A'I

for T cas &,,> , (k,, r)& "< (- k, r')

where for TM (') case (37) + ON >A r))
"ofx= T•, -2A"I

ma, ma,' 'lI~z - z) ~

for TE (") case. + - ) dk,

Hence, one only needs to find the modal coefficients 
1

ao', and a"" in region 0, in order to completely specify &`,<(k,, r)O>(-k, r')

the fields in all regions. Specifying (36) for region 0 (i.e., -2A'
m = 0) and invoking the Lorentz reciprocity theorem to,•, &;,<( r)&; >t-k, r'))

the pair of fields (Er, H ) and a set of source free test + E-P '- 0  ,

fields (&, NO`) in the region V0, bounded by the planar -2A"

surfaces of S< and S,, slightly below and above the
source respectively as shown in Fig. (1), we get - 20 6(r - r'). (43) 3

J ds" (Eo x KOO - x He1) where (*, XC) are given by (& e + R0 "(0)e.;

s .3sC, = h. + R, (0)h,.). The above expression for gm,.o

can be written more explicitly using (39), (37) and (21)-

= &j0dvg0.Jo (23) as
= 0• p. (8)- -G'" 6(r - r') + '1(z - z') ,

00 P, ~(38) k2

2Note that T.. is the ratio of the incident tangential electrical fields of 2.o- [a TI.A o•A"

regions m and n; namely. 
2K.

NX') x e:) 'T,.. a.. (* x 0,'). • (e-" " + R.> e-2  e-"t)

•1 i U
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(e0 + R "< e+J2"o4o e +j&7')

m + -,, (,.o W0 > ejAPT

"+ R ,<r> e eM e-jk<. )(A- 0--

"+ Re'<e+J2`oOA6<e• 4
7')]

"+ %(z'- z) ' dk,

., A-1
e-.Y"Z TO ."<

• e REGION (0) REGION (I)

(e-J'• r + R < e+J2K •ejk r) Fig. 3. Directions of k:, n., and n., on either side of interface (0)f (m
= O, 1).

* (e+jk..F' + R,>e-J2.O0e+jk>0

k where Ai '• is for the wave traveling in the ±t directions
A' T 1<o -- (AI<e -- " as shown in Fig. 3.

- 0Km The dyadic Green's function evaluated in the region (m)

+ , -jk• 7) consists of the spectrum of two types of plane waves ex-"cited by the source at z = z' in region (0); these are the
* (A6< e ' + Rol> e efL> " 0")], direct (incident) plus reflected waves. The total "effec-

tive" incident wave at z = z + is given by (see also (A 1l)
(44) of the Appendix),

where A is defined as (fl/A), z0 , z0, zm are specified in ....
Fig. 1, and k,! is given by e 0

kl = 0,+ Jk, ± ; I I = k,= tue. (45) __1_ _ (49)

and, unit vectors 1 ", and A are defined as ( 0R

1ky - 1k, (-itk, - .ky)Ki ± £k and A is the sum of the geometric series,
k" ,k, =(46) A la a + 3 ~A" k, ki k, (4)A = I + a + a 2 + a 3 +..;

Also note that RG" = R >(z +), R < = R(z• ), and R,• - a = R (z )R<(z-)e- (50)
R ' (zm) for m ' 0. The physical interpretation of the pa- Physically A in (50) is the total sum of the plane waves
rameters defined here will be discussed in the following traveling in +f or -f directions which result from the
section. infinite number of bounces at the interfaces of slab (0),

therefore it can be viewed as the "effective" incident
V. PHYSICAL INTERPRETATION OF THE DYADIC wave at z = z0', as is shown geometrically in Fig. 4.

GREEN'S FUNCTION FOR A MULTILAYERED MEDIA The total incident wave at z = z is transmitted through

In this section we will try to give some physical insight the slabs (0 to m), by the effective transmission coeffi-
to the dyadic Green's function of the multilayered media cients, T >. 0 (see (A 12) of the Appendix),
derived in the preceding section.

The double prime, ("), denotes plane waves in the PWS TM. 0 = (Toe-iEdI)(T2 e-J2 1 d) " (T,_ - e-•d'), (51)

representation for which the electric field is normal to the where di is thickness of the slab (i), (for i = 0 to m). At
plane of incidence, (i.e., the plane defined by the propa- the slab m, the total field will be the superposition of the
gation vector, k, and the direction normal f); thus, the effective incident field plus the effective reflected field
polarization of electric field vector, A ", is given by from the boundary at z = z, as shown in Fig. 5.

-2 x k Aky - . Note that the ratio of km,01/koa, in the TM (') part of

tl x kj k (47) (44) is simply the ratio of the cosine of the angles that k0
and km make with the normal of the interface which is

Likewise the prime, ('), denotes plane waves with the depicted in Fig. 6, and results from the continuity of the

electric field in the plane of incidence (with the magnetic tangential TM electric fields at the each interface.

field normal to the plane of incidence). In this case, the Although the limits of the spectral integral extend from

polarization of the electric field vector, A', is given by - c to co, the reflection and transmission coefficients, r,,
and 7',, for each interface and hence, the effective reflec-

APR " X k4 (-)k• - k,) ± k tion and transmission coefficients, R. and Tm, have an

"x kj (48 asymptotic limit for large value of k,. Figs. 7-10 show the
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-'- I

II
REGION(-I) REGION(OM REGIONCI) REGION(-I) REGIONCO) REGION (I) I

Fig. 4. Plane waves bouncing back and forth at the interfaces of the slab (0) and its equivalent representation.

I
mission coefficients of (A12)-(A15) as k, goes to infinity.
That is,

Et - - for TM (')

E, +-2 -I 0 1 - - n-I m m. - lrn R Z = lim r, - I •, + , i

k, - co k, cc , A i - , for TE(")
.Pt:I+ /zm

(52)

Fig. 5. Physical interpretation of incident and reflected waves in the slab and
m due to the point current dipole source in the slab (0).

\( 2 em, for TM(' I
\ / //. \ / lim T , f lim rn _ + t

k AM + '_, for-TE(M .

9 .(53)

As is evident from (51) for any multilayered media with
a nonzero thickness, we will have

0 Ir mI lim T.= 0 - 0. (54)

Fig. 6. Direction cosines that ko and k. make with the normal 2, these k,--c

result from the continuity of the tan ential •'r electric field at each inter- The numerical implication of this phenomena is that forface; *o = eos-'(xo/ko),.9,-=cs •/ J h u ei a m lcto fti h n m n sta o
large values of kt, the effective reflection and transmission I
coefficients, R. and Tm, can be replaced by their associ-

real and imaginary parts of effective reflection and trans- ated half-space reflection and transmission coefficients, I'r,
mission ceefficients for one, two and three layer geome- and rm. Also it is evident from Figs. 7 and 8 that for a set

tries as a function of normalized ki, (with respect to the of constitutive parameters and layer thicknesses, there ex-
free space wave number, ko), for TM and TE cases, re- ist some value of k, for which the denominators of effec-
spectively. It is evident that the values of these coeffi- tive reflection and transmission coefficients go to zero and

cients approach certain limiting constants for large values consequently these coefficients become singular. These
of k,. It can be seen from Figs. 8 and 10 that the values values of k, correspond to the surface wave modes, and
of effective transmission coefficients approach zero for k, the associated residues are proportional to the fields of
larger than 3; physically this implies that no evanescent these modes where are launched by the impressed source I
wave with a large transverse wave number k, can pene- [61, [20J. Also, the sharp variation of these effective re-
trate through the layers. One can of course predict these flection and transmission coefficients, at the various points I
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Fig. 7. Real and imaginary parts c,.' effective TM reflection coefficients as a function of normalized k, (with mSres ;t to ko) for a
half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer thick-
nesses are: (po., = 1.0, eo., = 1.0), ( = 1.2. e,., = 3.25). (j'2., - 1.3, e,. - 10.2). (0., - 1.6. (3., - 2.2). (d,/A 0 =
0.1), and (d2/N/ , -0.1).
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Fig. S. Real and imaginary pairs of effective TM transmission coefficients as a function of normalized k, (with respect to k) I
for a half-space, as well as for one-layer and two-layer media on a half-space. The relative constitutive parameters and layer
thicknesses are: (po., - I.0, to, - 1.0). (pl., - 1.2, tI., - 3.25), (I., - 1.3. t2., = 10.2). (A., = 1.6. (j., - 2.2). (d,/X0
- 0.1). and (d2/Ah - 0.2).
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in these Figures result from an abrupt phase change of the each region. The reflection coefficient at z. - in region (n
associated half-space reflection and transmission coeffi- - I) can be written as
cients at the vicinity of k, = kin., for (m = 0, 1, 2, or 3). Z(Zn.- I) - 1i7I - I

R_, I - Z(zn._1) + 7n_-I (M)
VI. CONCLUSION where

A relatively simple and systematic approach is taken to -pl.d
drive the dyadic Green's function for a multilayered di- Z(zn.) = n + Rn ; RR 1 7in +I - ?In (A4)
electric/magnetic media via the two (t)-directed solenoi- I - Rn e -x/; . IN+I + IN/ (

dal eigenfunctions, and the utilization of the Lorentz re- After incorporating (A4) into (A3), the reflection coeffi-
ciprocity theorem such that it provides a useful physical cient R,- can be expressed as
interpretation. It is shown that the Green's dyadic can be
written in terms of 'he spectrum of plane waves (TE and r, - + Rne -IN""" = 17n - I

TM) which resemble the response of a source excited Rni 1 + n._ -Rne _ =?in + 71_in-
multiconnected piece-wise uniform transmission line. The
concept of effective reflection and transmission coeffi- (A5)
cients is discussed, and the physical interpretation of the Expression R. - in (A5) is called "effective" reflection
individual terms along with the limiting behavior of some coefficient for region (n - 1). It is a coefficient that relates
of these terms is given. all interactions from the presence of other regions to the

incident voltage in region (n - 1). One can also relate the
incident voltages of regions (n - 1) and (n) in the follow-

APPENDIX ing form:
PIECEWISE UNIFORM TRANSMISSION LINE THEORY V. )(+ Rn

In this Appendix we briefly review the piecewise uni-
form transmission line theory. As explained earlier, the Z = Vj,..(Z. _ i)(l + R.e - 2 ..d)), (A6)
and z' functional dependence of the field quantities ex- hence; Vjn•c(zn._j) can be expressed in terms of
cited by a electric point dipole current source in a general Vi,,.n i(Zn - I) as
multilayered media is analogous to the problem of source
excitation of a piecewise uniform transmission line. The Vi,,n(zn - I) = T. -I(zn -I1)V,, -i(zn- 1 ), (A7)
voltage and current on a source free uniform transmission where
line with wave number K. and characteristic impedance
9,, can be expressed as Tn._ I 1 +R (A+)

V.(Z) = Vic.m(Zo)(e -j,,z, - D) + Rm(zo)ejx: - I)+ 7

After substituting (A5) for R. - I in (A8), Tn _ can be ex-

im(Z) - ---" (e -jXW Z- Z0) - R ,.(zo)e i(l.z - Z o)), (A l) p ressed

U I + F4-IR e-lKd.; 7n- I + 1.

where Vic,.(Zo) and Rm(Zo) are the incident voltage and 1 + Fn-IRne

reflection coefficient respectively at point z = zo. The re- (A9)
flection coefficient, Rm(z), and the impedance, Zm(z), at a T,, in (A9) is called "effective" transmission coeffi-
point z are related by cient. It is a coefficient that relates the incident wave of

+Z(Z) - '•m. Z(Z) = V,(Z) region (n - 1) to the incident wave of region (n). There-
m Z)(Z) + t. /- (A2) fore, the voltage at a point z in region (n) can be expressed

tsdido e n fin terms of the incident voltage at point zo in region (n -

It is desired to derive some expressions for a piecewise 1) by incorporating (A7) into (AI); hence,
uniform transmission line that relate the voltages and cur- V.(z) = V,,.e - i(zo)e -j - - ' - T -

rents at a pair of points on the line which are located in
different sections. Let us first consider a simple configu- ) (- - • + Rn • +J(•(-•.)). (A 10)
ration shown in Fig. I 1 which consists of two semi-infi- The incident voltage in region (n + 1) can likewise be
nite transmission lines corresponding to regions (n - 1) found in terms of the voltage in region (n).
and (n + I), connected with a finite line, d. = z. - z,-I, This formulation can be generalized to the total of (N
corresponding to region (n). For a known incident voltage + 2) number of finite length transmission lines, (0"' and
in region (n - I), it is of interest to find voltages and (N + 1)h' regions are semi-infinite), with the character-
currents in different sections of the transmission line. For istic impedance and wavenumber of 'i. and ,., respec-
doing so, one needs to find the incident voltage and re- tively for (0 s m s N + 1), as shown in Fig. 12. The

I
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Fig. I 1. Two infinite transmission lines connected with a finite length transmission line at z - z. and z - ,. z

- +I I

0 1 2 N-I N N+I

+ I
ZO Zl Z2  ZN-1 ZN ZN+1

Fig. 12. General plecewise uniform transmission line; incident waves travel in +*-direction. 3

voltage and current at point z in region (m), as a function in which the incident field travels in (-f)-direction, pro- m
of the incident voltage at point z = 0 in region (0) can be vided K,, - -K, and (m T-) -' (m±). Hence; the effective
written as reflection and transmission coefficients for the geometry

V.(z) fi V,'O(,)e -y"0 To (e. > -y,-z.) depicted in Fig. 13 are respectively defined as I
+ R.'e r, + R. Oxi-

•~~ I + E.,R,,<Ie-f2"a-'d4-1

I m(Z) I V nc0 (0) e -( z T M>, e 1 - +) - U
17,, r< f,-M - 71M (AI4)

R > .e+ J K' z z ) , ( A l l ) Ml u1 M + T im

where, TM'0 and R,> are respectively defined as < i

n-I T. Q 1 +e- -R , dm -e ;

T > 0 f= l Tj>(zi)e -j adx- + A ÷ 
(A.')

M. i-o 7< 1 + r,.(AI15)
T(z-) = j> (A12) and

I + m+l

and T,< iI T<(zi)e-y'It. (A16)
r,>• + R> + 1 e -j2 g( + tda i this i03

R>(z) 1+ R>+Ie -1m ,+ ,,+ (A13) Note that in this case the subscript m of the indices of theS P in ~ layers in Fig. 13 is monotonically decreasing; (i.e., m :
where R,>+ 1 and T,> can be calculated by successive ap- 0; zn, - < z.,).
plications of (AS) and (A9), starting from region N. The It is evident from the above analysis that once the in-
superscript (>) explicitly used to imply that the incident cident waves on either side of the source in region (0) are
field travels in (+f)-direction. known, the voltages and currents of other regions of the

All equations derived here are applicable for the case transmission line will be specified. I
I
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-N- 1 -N -N+- 1 -2 -0 0

Z-N-i Z-N Z-N+. Z-2 Z-L .0

Fig. 13. General piecewise uniform transmission line; incident waves travel in -2-direction.
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Improving the Performance of a Slotted ALOHA
Packet Radio Network with an Adaptive Array

James Ward, Member, IEEE, and R. T. Compton, Jr., Fellow, IEEE

I
Abstract-The use of an adaptive antenna array is presented as not the case, as in satellite or mobile communications, CSMA

a means to Improve the performance of a slotted ALOHA packet is less effective.
radio network. An adaptive array creates a strong capture effect In the standard slotted ALOHA analysis, it is assumed
at a packet radio terminal by automatically steering the receive
antenna pattern toward one packet and nulling other contending that if two or more packets arrive in the same slot, none of
packets in a slot. A special code preamble and randomized arrival them is received correctly. In reality, the correct receptionI dmes within each slot allow the adaptive array to lock onto one of a packet depends not only on whether interfering packets
packet in each slot. The throughput and delay performance of are present, but also on the received power of each packet.
a network with an adaptive array is computed by applying the Roberts [5) first noted that if one of the packets is of much
standard Markov chain analysis of slotted ALOHA [11, [21. It is
shown that throughput levels comparable to CSMA are attainable higher received power than the others, it may still be correctly
with an adaptive array without the need for stations to be able received. This "power capture" effect improves the throughput
to hear each other. The performance depends primarily " the and delay performance of a packet radio system. Power capture
number of adaptive array nulls, the army resolution, and 1t has been studied by Abramson [3] and N-imislo [71 when it
length of the randomization interval within each slot. occurs naturally as a result of different propagation distances

from transmitter to receiver and/or channel fading. Lee [61

1. INTRODUCTION considered assigning random signal levels to the stations to

A Ltminduce the capture effect. Also, since the received power

esALOHA packet radio communication systems are of inter- from a given direction is proportional to the receiver antenna
est because they provide a simple way of multiplexing response in that direction, directional antennas can be usedI many users into a single radio channel. In these systems radio to create the capture effect at the receiver. Binder et al. [81

terminals transmit packets to each other whenever they have have considered using directional antennas to resolve potential
information to send, regardless of whether other terminals may crosslink conflicts in a multiple satellite packet system. In
be transmitting at the same time. Because terminals do not their work the direction to which an antenna is steered isI coordinate their transmissions, packets from different terminals obtained apriori from a form of scheduling used to set up each
frequently collide. A collision destroys all packets involved, communication link. Their scheduling procedure, in addition

and these packets must then be retransmitted after a random topriniction informatin, aloreduces th cotetion
dela. Clliion liit te mximm trouhputat ne eceverto providing direction information, also reduces the contention

delay. Collisions limit the maximum throughput at one receiver somewhat at the expense of increased packet delay.
in an ALOHA system to 18% if the system is unssotted and In this paper, we examine the use of an adaptive antenna ar-
to 36% if it is slotted (31. ray to create a capture effect and thus improve the performance

Because of these low throughputs, much effort has been of a slotted ALOHA system. An adaptive array is an antenna
devoted to finding improved packet radio protocols. One well- system that controls its own pattern in response to the signal
known improvement is carrier sense multiple access (CSMA) environment [9], [10]. An adaptive array can capture a packet
[4], in which terminals listen to the channel before transmitting by pointing the peak antenna response toward that packet

I to determine if it is busy. If the channel is busy, transmission while simultaneously forming pattern nulls on other interfering
is delayed until the channel becomes idle. Kleinrock and To- packets [11]. An adaptive array can do this automatically
bagi have shown that choosing the retransmission probability without requiring any a priori direction information. Thus,

i carefully in a CSMA system can yield high throughputs [4-. there is no need for prearranged scheduling in a system
However, the usefulness of CSMA depends on whether all with an adaptive array and the delay performance should be
terminals in the network can hear one another. When this is improved. Furthermore, an adaptive array provides a much

e astronger capture effect than an ordinary directional antenna,3 Paper approved by the Editor for CATV of the IEEE Communicatio bcas eptrnulsaelcdinheietosofotnig
Society. Manuscript received February 10, 1990. This work was supported because pattern nulls are placed in the directions of contending
in part by the U.S. Army Research Office, Research Triangle Park, NC, and packets. We shall show that the use of an adaptive array can
by the Office of Naval Research, Arlington, VA. under Contracts DAAL03- provide throughput and delay performance comparable to that
89-K.0073 and N00014-89-J-1007 with The Ohio State University Research of CSMA. Moreover, with an adaptive array there is no need
Foundation, Columbus, OH.

J. Ward was with the ElectroScience Laboratory, The Ohio State University. for users to be able to hear each other.
He is now with M.I.T. Lincoln Laboratory. Lexington, MA, 02173. In Section II we describe the communication system we

S R. T. Compton, Jr., is with the ElectroScience Laboratory, The Ohio State shall consider. Section Ill gives a brief overview of adaptive
University, Columbus, OH 43212.

IEEE LoA Number 9106306. arrays. Section IV describes how an adaptive array can acquire
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Fig. 1. A single-hop packet radio system. 3
the first packet to arrive in a slot while nulling subsequent REFERENCE

packets in that slot. In Section V we calculate the throughput SIGNAL

and delay performance of a packet system using an adaptive FEEDBACK ERRO

array. Section VI presents numerical results, and Section VII SIGNAL

contains our conclusions. 1(t)

Fig. 2. An adaptive array.

fl. THE COMMUNICATION SYSTEM MODEL

We consider a simple ALOHA system in which a repeater occurs.) The method used to form the antenna pattern is
links a network of radio terminals, as shown in Fig. 1. In this described in Section IV below.
network terminals transmit messages to each other through Now let us consider this system in more detail. We begin
the repeater. We assume time is slotted and that the network in the next section by reviewing the adaptive array concepts
uses a slotted ALOHA packet radio protocol. Transmissions needed.
between terminals occur randomly in each time slot. Each
terminal transmits a packet in a given slot whenever it has III. ADAPTIVE ARRAYS 3
one to send, without regard for whether other terminals may An adaptive array is an antenna system that controls its own
be transmitting in that same slot. 

A d pi earyi nat n as se h tc nrl t wAll packets are transmitted to the central repeater, which pattern, by means of feedback, while the antenna operates [9],retransmits them back to the network. The repeater is assumed [12], 113]. The signal from each element in an adaptive arrayto be a store-and-forward repeater. It demodulates each packet is multiplied by a weight and then summed to produce theand checks it for errors. if there are no errors, the packet is array output signal. A control system adjusts the weights toretransmitted on the downlink. If there are errors, the packet is maximize the signal-to-interference-plus-noise-ratio (SINR) at

discarded. The repeater downlink is on a different frequency the array output. After adapting, the pattern of an adaptive
than the uplink, so both the repeater and the local terminals array has a beam pointed at the desired signal and has nulls on
can transmit and receive at the same time. Since only the interfering signals. In a packet radio system, the desired signal
repeater transmits on the downlink, there is no contention on is just the first packet in each slot. The interfering signals are
the downlink. the other packets contending for channel access in that slot.

Each terminal monitors all downlink packets. By examining Fig. 2 shows an adaptive array with Ne elements. The signal
the address contained in each packet, a terminal determines i(t) from element j is multiplied by a weight w2 and then

whether it is the intended recipient of that packet. A terminal summed to produce the array output signal g(t). The weights
retains packets addressed to itself and discards others. More- are controlled by a feedback system that minimizes the mean-
over, when a terminal transmits a packet of its own over the square value of the error signal i(t), which is the difference
repeater, it listens for that packet on the downlink to determine between the array output i(t) and a signal f (t) called the
if the packet was successfully forwarded. If the packet is not reference signal. The reference signal is a locally generated
heard on the downlink, it is assumed that the packet suffered signal that determines which received signals are retained in

a collision on the uplink, and the packet is retransmitted after the array output and which are nulled. Minimizing the mean-
a delay of some random number of slots, square value of 1(t) is equivalent (for narrow-band signals) to

We assume the receiving antenna at the repeater is an maximizing the signal-to-interference-plus-noise ratio (SINR)
adaptive array.' The purpose of the adaptive array is to aim the at the array output and causes the array to steer a beam toward

repeater antenna pattern at the first packet to arrive in each slot any signal correlated with the reference signal and to null any
and then to null subsequent interfering packets in that slot, to signal uncorrelated with it [9).
prevent them from destroying the first packet. This technique It may be shown (9] that the optimal (maximum SINR)

will allow one packet to be received successfully, even when array weights are given by
several packets arrive in the same slot. (In a conventional W = -(I)
ALOHA system, all packets are destroyed when a collision

I The transmitting antenna at the repeater is assumed to cover all the us where W is the weight vector,I

of the network so that each terminal can hear all downlink packets. W = [Wl, W2,1 , WN.] (2)
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4 is the covariance matrix, an Ne-element array using one degree of freedom to form
the required beam maximum can also form nulls on up toS-• =£[x~xT], (3) N = N, - 2 packets. When there are more interfering signals

and S is the reference correlation vector, than the available degrees of freedom, the array will not be
able to null them all [9].

S = E[X'f(t)]. (4) Another limitation of adaptive arrays is that a given array
has only a certain ability to resolve signals in space. If

In these equations, X is the signal vector, i.e., a vector the arrival angles of an interfering packet and the desired
containing the element signals, packet are too close, the array cannot simultaneously null

X = [il(t),i 2 (t), .. N. (t)]T, (5) the interference and form a beam on the desired packet. In
this case, the array output desired signal-to-noise ratio drops

E[] denotes expectation, * denotes complex conjugate, and and the adaptive array may not capture the desired packet. To
T denotes transpose. The weights in (1) are known as the characterize the resolution capability of an adaptive antenna,
Wiener weights. we define the resolution width ,. to be the minimum angular

A well-known method of controlling the weights in an separation between two signals at which the adaptive array
adaptive array is the sample matrix inverse technique of Reed, can place a pattern maximum on one signal and null the other.
Mallett, and Brennan [14]. In this technique, the element The resolution width 8, is taken to be 0b/2, where 8b is the
signals are sampled periodically in I and Q (inphase and beamwidth of the array, i.e., the angular separation between the
quadrature) channels and an estimate of the covariance matrix first nulls on each side of the mainbeam. 8b depends primarily
is computed from the sampled signals. If X(j) denotes the on the array aperture size but also to a lesser extent on the
value of the signal vector X at sample time j, the sample element patterns and the number of elements. In the analysis
covariance matrix is computed from below, we relate the performance of the packet radio system to

K the number of nulls available and to the resolution capability
S= EX*(j)X T (j) (6) of the array.

j=1 With this background, we now describe a technique for
operating an adaptive array in a packet radio system.

where K is the number of samples used. The notation 4 is
used to indicate that (6) is an estimate of t in (1). The sample
reference correlation vector S is computed from IV. ACQUISITION

K The main difficulty in using an adaptive array in a packet
S= EX*(j)f(j) (7) radio system is the acquisition problem, i.e., the problem of

j=1 forming the beam on the first packet and nulling subsequent
packets in the slot. Each packet to be received by the array

where f(j) is sample j of the reference signal f(t). The will arrive at an unknown time and from an unknown direction.
optimal weights are then estimated by solving the system of The array must form its pattern on a packet very rapidly, in
equations time to receive the message portion of the packet. To allow an

4W = ,S (8) adaptive array to do this, we add a special two-part preamble
to the beginning of the packet. The first part of this preamble

for the weight vector. Reed et al. [14] have shown that will be used to trigger the acquisition process, and the second
this technique produces an average SINR within 3 dB of the part will be used to form the array pattern on the packet.
optimal SINR if the samples X(j) are statistically independent Fig. 3 shows the organization of a packet. A packet will be
and if the number of samples K is approximately twice the formed by first adding an address preamble to the beginning of
number of array elements. a fixed number of message bits, as shown in the top of Fig. 3.

When several signals are incident on the array, the reference The address preamble will identify the destination terminal and
signal F(t) determines which signals are retained in the array may contain other information such as the originating terminal
output and which are nulled. Any signal correlated with f(t) or a packet number. Next, the combined address and message
is retained in the array output and any signal uncorrelated with segments will be encoded with an (n, k) linear block code
f(t) is nulled [9]. To use an adaptive array in a communication [15], which will be used for error detection at the repeater.
system, the main challenge is to find a way to obtain a refer- Finally, after encoding, an additional two-part preamble will
ence signal correlated with the desired signal and uncorrelated be added to the beginning of the packet. This preamble, called
with the interference. In Section IV we describe a method for the acquisition preamble, will be used to lock the array pattern
doing this with packets. on the packet.

An adaptive array has two limitations that are important for The acquisition preamble will consist of two consecutive
this application. The first is that an array with N, elements has code sequences, called Codes 1 and 2. Code I will be a
only N, - 1 degrees of freedom in its pattern (9]. Each null 13 bit Barker code [16], which has a highly peaked aperiodic
or beam maximum formed by the array requires one degree of autocorrelation function as shown in Fig. 4. Code 2 will be
freedom. In our case, the array needs to form a beam maximum one or more periods of a pseudonoise (PN) cde [17]. The
on one packet and nulls on all other packets in a slot. Thus, periodic autocorrelation function of such a cod& has a sharp
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Fig. 3. Packet organization. 3
~I I c ler ~ e n o S i v a l I

13.. Fig. 7. Packet acquisition circuitry. 1

array pattern is just the pattern of the element that is turned
on. This element pattern will be chosen so it covers the entire
net. We call this the uniform coverage mode. In this mode,

,L any user can access the system.

13 26 Time shift To acquire an incoming packet, we use the following
technique. At the array output is a filter matched to Code 1,

Fig. 4. Autocorrelation function of a 13 bit Barker code. followed by a threshold detector, and then a reference signal

generation circuit, as shown in Fig. 7. Assume first that only
AiowrCI,,. one packet arrives during the slot. With the array in its uniform

1 coverage mode, the incoming packet will pass through the
't array and into the matched filter. The output of this filter will

contain a sharp peak at the end of Code 1. This peak will
serve as a timing spike to trigger generation of a reference i
signal during Code 2. The reference signal will be a signal

.Thrill modulated by the same PN code as in Code 2. The timing
spike will start the reference signal at the proper time so it
is correlated with the received packet during Code 2. The

Fig. S. Autocorrelation function of a PN code, reference signal will continue only during Code 2. The array

pattern will be adapted during Code 2. Because the reference
peak of height N,, at zero shift (and at shifts of any multiple signal code is synchronized with Code 2 in the packet, the
of the code period) and then drops to a constant value of -1 array will optimize its weights for reception of the packet.2

for shifts over I bit where N, Is the code period, as shown At the end of Code 2, the array weights will be frozen. The
in Fig. 5. array pattern will then be held fixed during the address and l

To allow the packet acquisition, the width of the slot T. will message portions of the packet.

be made larger than the packet width Tp by an uncertainty Now suppose two or more packets are received in the same
interval T,, as shown in Fig. 6. To exploit the autocorrelation slot. Each of these packets will cause a timing spike at the

properties of the preamble codes, the starting times of packet matched filter output. But only the first timing spike will
transmissions from all terminals will be randomized over the trigger reference signal generation and begin array adaptation.
interval T., as in 118]. The uncertainty interval also makes the Timing spikes due to later packets will be ignored by the

system, because the acquisition circuit will be designed soacquisition process fair (by preventing stations closest to the that once it has been triggered, it will not trigger again in the1

repeater from always acquiring the repeater first) and gives the same slot.

designer control over the probability that two packets arrive Because the reference signal code will be aligned with

at almost the same instant. Code 2 of the first packet, it will be essentially uncorrelated

The adaptive array will operate as follows. At the beginning

of each slot, when the repeater is ready to acquire a new 2The reference signal does not have to be locked in frequency or phase to
packet, the array weights will be set so the array pattern Covers the received packet for this process to work. The only requirements am thatpackesn the anayweigts will beset pattern covesilyobtainedbytu n the PN codes be synchronized to within about one fourth of a code bit, andali users in the net. Such a pattern is easily obtained by turning that the differenri between the reference signal frequency and the received
one array weight on and the rest off. With one weight on, the signal frequency be less than the reciprocal of the adaptation time (191. (201. 3
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with the second packet as long as the second packet is at slot until successful, at which time it becomes unblocked and
least one bit later than the first. This is so because the resumes transmitting new packets. Typically, p, > p,, so that
autocorrelation function of a PN code has a very low value for backlogged packets are quickly cleared. At the end of each
shifts of 1 bit or more. (See Fig. 5.) The second packet and all slot, the downlink transmission provides immediate feedback
later packets will therefore be regarded as interference by the to the terminals regarding the success of their packets.
adaptive array and will be nulled. At the end of Code 2, the Let Xk denote the number of blocked terminals at the
array pattern will be optimized for receiving the first packet beginning of slot k. The number of blocked terminals at the
and will have nulls on later packets. end of the slot depends only on the number at the beginning

If the second packet arrives less than one bit after the first, of the slot and the events occurring during the slot. Thus,
the first two packets will be correlated. The adaptive array the time-varying state of the network can be described by
will not null the second packet in this case and there will a Markov chain, where the state represents the number of
be no throughput. In this case we say that the first packet is blocked terminals. At slot k, the state Xk can vary between
not acquired. With the uncertainty interval T7,, properly chosen, 0 and M. We shall compute the one-step transition matrix
however, the probability of this event is small. The throughput P = [P,,j] and then the equilibrium probabilities of the
analysis below takes this possibility into account. Markov chain describing this system.

The uncertainty interval T. and the durations of Codes I In a given slot, there will be a total of nt = nn + nr packets
and 2 will be chosen so that all packets in a given slot begin transmitted where n, and nr are the number of new and
no later than during the Code 2 preamble of the first packet previously backlogged packets transmitted in the slot. Given
in the slot. For this reason it is possible to finish adapting the the state Xk = i, nn and n,- are independent Bernoulli random
array weights at the end of Code 2 and fix the array pattern variables with distributions
during the address and message segments. The adapted pattern
at the end of Code 2 will have nulls on the interfering packets, Q0(l'i) e Pr(n n = l lXk=i}=( M-: l "(-(9)
and these will be retained for the rest of the slot. . /

In the analysis below, we assume that the packet SNR is
high enough so that if a packet is present, it is always detected Q'(li) A Pr{n,= Wk=i}=(j)Pr(1-Pr)i-l" (10)
by the acquisition circuitry. We also assume that the possibility
of a false alarm, i.e., the triggering of a reference signal
without the presence of a corresponding packet, is negligible. Thus, the distribution of the total number of packets per slot is
We assume the array acquires the first packet to arrive in each
slot as long as another packet does not arrive in that slot
less than one bit after the first. However, even if a packet Qt(lli) = Pr{nt = lIXk = i) = Qn(8li)Qr(l - 81i).
is acquired, it may still not be successful. An acquired packet 8=0

will be unsuccessful in either of two cases: (11)
1) when more interfering packets arrive during a slot than
2the number of available nulls, or Let P.(l) be the probability that a packet is successful
2) when another packet arrives too close in angle to the given that I packets are transmitted in the slot. The successAt the end of each slot, the array is reset into its uniform probabilities P.(I), which depend on the adaptive array char-

t acteristics and the acquisition parameters, will be determined
coverage mode, and the acquisition cycle starts over for the below. Given P.(I), the transition probabilities Pj may be
next slot. found by enumerating the possible ways that each transition

We now consider the throughput and delay performance may occur a
of a packet radio repeater using an adaptive array with this a occur.acquisition technique. " j ~ -a,. M Not possible, since at most one

acqusitin tchniue.backlogged packet can be cleared in a slot.

V. THROUGHPUT AND DELAY ANALYSIS Pij = 0. (12)

To determine the throughput and delay performance, we
apply the Markov chain analysis of a slotted ALOHA network
([1] [2) to include the effects of the adaptive array and the 1 = i - ,i M:
acquisition process. 1) nn - , n,.r > 1. and one backlogged packet is

We consider a finite population of M terminals transmitting successful.
to a central repeater equipped with an adaptive array. At the
beginning of each slot, each terminal is either blocked or P,.i- Q = . (01i3
unblocked, depending on whether its previously transmitted Q-(lji)P.(1).

packet was unsuccessful or successful. An unblocked terminal I~t

transmits a packet with probability p, in a slot. Only un-
blocked terminals generate new packets. A blocked terminal j = i + k, i = 0,..., M, k 0,..., M - i:
retransmits its backlogged packet with probability p, in each I) n, = k + 1, n, 2! 0, and one packet is successful.
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2) n, = k, n, Ž_ 0, and none of the transmitted packets For, I > 2, we use the uniform distribution of the transmission

are successful. times to write I
T. - Tb T. T,.

Pi,i+= Qn(k + Ili) Q,(lli)P.(l + k + 1) P.(l) = .. ) dt, ... dt 2 dt1 . (18)

0 t1 +Tb T, +Tbi

+ Qn(kli) • Q,(Ili)(1 - P,(l + k)). Thus, from (17) and (18),
(14) P.(L) { > (19)

where u = Ta/Tb is the length of the uncertainty interval in

This Markov chain analysis is similar to that of Namislo [7]. Once a packet is acquired, two conditions must be satisfied

(Namislo determines the success probabilities for a fading for it to be successful. First, there must be no more than

environment by using a Monte-Carlo simulation. We will N = Ne - 2 additional packets transmitted in the slot, be-

derive them directly for the adaptive array.) I
To compute the P.(1), we first note the distinction between cause the adaptive array can place pattern nulls in at most
acquited packetse adsucwesful packers.o An asicqired paetw N directions. Second, no other packet can arrive from an

acquired packets and successful packets. An acquired packet angle within Ob/2 of the acquired packet arrival angle. If
is one for which the array acquisition circuitry generates a this happens, the adaptive array will be unable to resolvereference signal that is not correlated with any other packets. the acquired and interfering packets and there will be no

Note that for a packet to be successful, it must first be acquired throughput for the slot.
by the array. Once a packet is acquired, it is successful only if The P,1 a(l) may be computed as follows. First, we have
the adaptive array can form a beam on the acquired packet and
place pattern nulls in the directions of the other contending P.1,(1) = 1 (20)

Given that there are 1 packets in a slot, we characterize since with only one packet present there are no other packets
each packet by an arrival tice ts, i = 1,..., l within a slot to interfere with the acquired packet. Moreover, because the

and an arrival angle 0i, i = 1,... , 1. In accordance with the adaptive array has only N nulls, we set
acquisition procedure in Section IV, we assume that the t1 are P.1 0 (l) = 0, 1 > N + 1. (21) i
i.i.d. random variables uniformly distributed on the uncertainty
interval [0, T,] within the slot. We also assume packet arrival To find Poaj(I) for 2 < 1 < N + 1, recall that 01 is the
angles are i.i.d. random variables (independent of the arrival arrival angle of the acquired packet and define D1 =
times) uniformly distributed in azimuth [0, 2ir] about the [01 - 0b/ 2 , 01 + 0b/2]. Then Icentral repeater node. Then Pala(1) = Pr{02 i D1,0 3 V D1,... , 01 DI}

P.(L) = P0 I)P8  ) (15) = E&,[Pr{02 i DI,O63 % DI,. . ,O- 0 D,161 }0 3
where P.(1) is the probability that a packet is acquired given I = Ee fj Pr{ Oi% DI 1 ,} (22)
packets are incident, and P.1 o(I) is the probability that a packet L2 1 1
is successful given it is acquired and I packets are present in where E0, [I denotes an expectation over the random variable
the slot. The P.(L) depend on the arrival times and the length 01, and we have taken advantage of the independence of the
of the uncertainty interval, while the Pl,.(1) depend on the arrival angles.
arrival angles, the resolution capability of the adaptive array, However, I
and the number of available nulls.

With the preamble code structure described in Section IV, Pr{0 €Dll01} = 1 -L) (23)
the first packet in a slot is acquired as long as all subsequent 3
packets in that slot arrive at least one bit duration Tb later than which is independent of 01. Thus, (22) becomes
the first packet. If the first packet is not acquired, no packets --1
are acquired for that slot. Thus, P.I(1) = 1 -_ ) 2 < j < N + 1. (24)

Pp I - lPr{t 2 > tl + Tb,t3 > t1 + Tb,...,tl > tI + Tb}
(16) Hence, from (15), (19), and (24), the success probabilities 3

are

where the factor of I accounts for the fact that any of the 1
packets transmitted can be the first packet in the slot. If only 0; 1=0

single packet is transmitted in a slot, it is acquired, so P,(L) =M (I .- ,)'(I .1--I1; 2<1 N+ . (25)

P.(1) = 1. (17) 0; 1> N+ 1
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Given that the system is in state j, the probability of a 1

successful packet transmission is the conditional throughput 0.9

S(j), given by

S0.5S~~~~~~S(j) =Z~(~).I.(6 .

The average number of new packets entering the system in 2

state j is0. S0,2

Si. U) = (M - j)p,1 . (27) 0.1 ( sin)

C0 5 10 15 20 25 30 35 40 45 50

The Markov chain described above is irreducible. Since we th nr•or of aked =n

assumed a finite population, all states are recurrent non-null.
The states are also aperiodic. Consequently, this Markov chain (a)
has a limiting distribution denoted by

S= [7r(O), 7r(1), ... , r(M)] (28) 0.9

0.8

where 0.7
S0.6-

-r(j) = Pr{X, =, = = l Pr{Xk+. = jXk = i0.i

(29)
S0.4

N-0-no AA
The steady-state probabilities are found by solving the linear & 03

system of equations (21] 0.2 s -.)

r= P (30) 0.1
0

along with the constraint that 0 5 30 15 20 25 30 35 40 45 50
j,c te n=mb of Wocked uscrs

M (b)

E 7r(j) = 1. (31) Fig. 8. Conditional throughput comparison. For the curves with an adaptive

.=0 array: 0b = 10*, u = 62. (a) Al = 50, p., = 0.002, p. = 0.2. (b) .A1 =
50, p, = 0.006. Without the adaptive array, p,- = 0.1; p, = 0.2545 with

Once the ir(j) are found, they can be used to determine the the adaptive array.

average throughput, delay, and backlog of the system.
Given 7r(j), the average number of blocked terminals P is VI. RESULTS

M First we examine the conditional throughput S(j) of systems
-= E jr(j). (32) with and without an adaptive array. We consider a network

i=o of 50 users. We start with an example where p, = 0.002
and the average throughput is and p, = 0.2. For this case, Mp, = 0.1, which is a low

traffic situation where slotted ALOHA may typically be used.
M Fig. 8(a) shows the conditional throughput S(j) and the new

- E = ES(j)sr(j). (33) packet input rate Sin(j) versus the state j. Curves for various
o=0 numbers of adaptive array nulls are also shown. For these

In the steady state, the average input rate equals the average curves we have eb = 100 and u = 62. There is a significant

throughput, so increase in conditional throughput as the adaptive array is
added and the number of nulls is increased. Also, note that

3i. = si. (P) = 3. (34) there is a fixed number of nulls above which little further

improvement is gained.
We use Little's theorem [231 to express the average delay D The stability problems of ALOHA systems have been well
experienced by a new packet as documented [1], [2], [22]. The finite population ALOHA

- model is said to be stable if there is a single intersection

= .(35) point of the S(j) and Sin(j) curves and this intersection point
Sin S is in a region of low delay. In Fig. 8 we have intentionally

chosen p, high enough so that the system without an adaptive
We now use these results to examine the performance of a array is unstable. The curves with an adaptive array are stable.

slotted ALOHA system with an adaptive array. Moreover, for an adaptive array with 4 nulls or more, the
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Fig. 9. Conditional throughput for a network of 50 users with p,, = 0.018, (a)
as the number of adaptive array nulls is varied. Ob = 10.1 and u = 62. U

0.9

value of pi could be raised substantially without introducing 0o8

instability. Thus, it is seen that the adaptive array has a 0.7- IN
stabilizing effect on the system.

In Fig. 8(b) we compare two stable cases for p, = 0.006. In • 0.6

each case we have chosen the largest retransmission probabil- 0.5

ity possible for stable operation. Without the adaptive array, 04.

Pr is set to 0.1, which results in an average throughput of 0.3

S = 0.28E packets/slot, an average backlog of B = 2.01 < 0.2
users, and an average delay of D = 6.99 slots/packet. 0.2

The maximum possible average throughput is Mp, = 0.3 0
packets/slot. With an adaptive array, p,. is set to 0.2545, 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

resulting in S = 0.299, B = 0.241, and D = 0.806 slots. For N I
such low traffic scenarios, the adaptive array provides only (b)

a slight increase in throughput but a marked improvement in so__
the delay performance. 45 I

The main advantage of using an adaptive array in an 40

ALOHA network is the ability to handle much higher traffic
rates and operate at a much higher throughput than is possible 3 -

in a standard ALOHA system. In Fig. 9, we consider a case 30
with p, = 0.018, so that on average, more than Mp, = 0.9 2N

packets (new plus backlogged) are transmitted per slot. We 20

fix p, = 0.2. To have a stable system, the adaptive array i
needs at least 5 nulls. For N _> 5, the average throug.iput is
0.8 packets/slot. This example shows how performance can

be improved by increasing the adaptive array capabilities. We 5
note that a throughput of 0.8 is comparable to typical values 0 0.o 5 0.01 0.0o 5 0.02 0.0oo 5 0.03 0.035 0o.4

attainable by CSMA [24], and with slotted ALOHA under Nw Irrawanu,,,, prob.a.ilty • (•icc/si)

other capture mechanisms [5]-[7]. (c)
In general, performance improves as the number of adaptive Fig. 10. Average 3, f, 5 performance. Without the adaptive array,

array nulls increases or as the array beamwidth is reduced. p, = 0.1. With the adaptive array, pr = 0.2, Ob = 10", u = 62. (a)
Increasing the number of available nulls allows more collisions Average delay versus p,,. (b) Average throughput versus p,,. (c) Average

to occur without reducing the number of successful packets. backlog versus p,,I

Reducing the array beamwidth allows the array to success-
fully null interfering packe:s over a larger angular region. limiting case of Ob = 0C, u = oc(Tb = 0), N = M - 1
Performance is also improved as the length of the uncertainty corresponds to perfect capture where one packet is successful
interval is increased. (Of course, a longer uncertainty interval in every slot in which at least one packet is transmitted.
requires a longer slot width and reduces the number of Fig. 10 compares the average delay, throughput, and back-
message bits transmitted per unit time.) As the adaptive log performance of systems with and without an adaptive array
array capabilities (resolution, number of nulls) are increased, for the case 0b = 100, u = 62, and N = 6. The retransmission
average throughputs close to unity can be approached. The probability p, is 0.1 without the adaptive array and 0.2 with the I
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array. These curves were obtained by varying p, and comput- '81 R. Binder, S.D. Huffman, 1. Gurantz, and P. A. Vena. "Crosslink
ing 3, 9, and P from (32)-(35). We see from Fig. 10(a) that architectures for a multiple satellite system." Proc. IEEE, vol. 75.

pp. 74-82, Jan. 1987.
the delay with the adaptive array is always better than without (9] R.T. Compton, Jr., Adaptive Antennas -- Concepts and Performance.
it, and the difference is greater as p, is increased (as the input Englewood Cliffs, NJ: Prentice-Hall, 1988.

traffic is increased). Fig. 10(b) shows the average throughput. (10] R.A. Monzingo and T.W. Miller, Introduction to Adaptive Arrays.
New York: Wiley, 1980.

For low traffic, both systems are stable and provide nearly the [111 M. Azizoglu, R.T. Compton, Jr., F.D. Garber. G.M. Huffman. and
maximum possible throughput. However, the system without H.C. Yu, "Adaptive arrays in satellite packet radio communication

thsbecomes unstable at relatively small p eng, Final Rcp. 718163-1, The Ohio State University, Dep. Elec.the dapivearry beome untabe a reltivly mal p, Eng., ElectroSci. Lab., Nov. 1987.

while the throughput with the adaptive array keeps increasing, (12] S. P. Applebaum, "Adaptive a-rays," IEEE Trans. Antennas Propagat.,

to a maximum of near 0.83. Finally, if pn is increased too vol. AP.24, pp. 585-598, Sept. 1976.
(13] B. Widrow, P.E. Mantey, L.J. Griffiths, and B.B. Goode, "Adaptive

far, the system with the adaptive array also becomes saturated antenna systems," Proc. IEEE, vol. 55, pp. 2143-2159, Dec. 1967.

and the network becomes highly backlogged. The average [14] I.S. Reed, J.D. Mallett, and L.E. Brennan, "Rapid convergence rate in

backlog for the two cases is shown in Fig. 10(c). Again, these adaptive arrays," IEEE Trans. Aerospace Electron. Syst., vol. AES-10,
pp. 853-862, Nov. 1974.

curves indicate that by using an adaptive array, we can achieve [15] S. Lin and D.J. Costello, Error Control Coding: Fundamentals and
acceptable delay at throughput levels that are much higher than Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[16] M. 1. Skolnik, Radar Handbook. New YokA: McGraw-Hill, 1970.
are possible in a standard ALOHA system. (171 S. W. Golomb, Shift Register Sequences. San Francisco, CA: Holden-

Day, 1967.

VII. CONCLUSION [18] D.A. Davis and S.A. Gronemeyer, "Performance of slotted ALOHA
random access with delay capture and randomized time of arrival," IEEE

In this paper we have shown how an adaptive antenna Trans. Commun., vol. COM-28, pp. 703-710, May 1980.
array may be used to improve the performance of a slotted (19] D.M. DiCarlo and R.T. Compton, Jr., "Reference loop phase shift in

adaptive arrays," IEEE Trans. Aerospace Electron. Syst., vol. AES-14,
ALOHA packet radio network. The adaptive array creates pp. 599-607, July 1978.a capture effect by separating packets in angle and thereby [201 D.M. DiCarlo, "Reference loop phase shift in an n-element adap-

tive array," IEEE Trans. Aerospace Electron. Syst., vol. AES-15,
preventing collisions at the receiver. We described how an pp. 576-582, July 1979.
adaptive array could be used in a slotted system and analyzed [21] E. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs, NJ:

Prentice-Hall, 1975.the performance of such a system. Typical performance results [221 D. Bertsekas and R. G. Gallager, Data Networks. Englewood Cliffs,
were presented. It was shown that this technique achieves NJ: Prentice-Hall, 1987.

a performance level comparable to CSMA. Unlike CSMA, 123] J. D.C. Little, "A proof for the queueing formula: I = Xi," Oper. Res.,
vol. 9, pp. 383-387, May 1961.

however, a slotted ALOHA system with an adaptive array [24] L. Kleinrock, Queueing Systems, Volume Ii: Computer Applications.

does not require that all users be able to hear each other in NewYork: Wiley, 1976.

order to attain high throughput. The performance is determined
primarily by the array resolution, the number of nulls, and the3length of the uncertainty interval in each slot. James Ward (S'84-M'91) was bomn tn Belleville,
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A Study of Discretization Error in
I the Finite Element Approximation

of Wave Solutions
Robert Lee, Member, IEEE, and Andreas C. Cangellaris, Member, IEEE

I Abstract-A dispersion analysis Is used to study the errors work has appeared on discretization error for the one-dimen-
caused by the spatial discretization of the fnite element method sional case [3], which confirms the results from [1].
for the two-dimensional scalar Helmholtz equation. It is shown Inthis paper, we seek to characterize the discretization
that the error can be determined analytically for S uniform mesh
_ of infinite extent. Numerical results are presented to show the error by means of a dispersion analysis for the two-dimen-
effects of several parameters on the error. These parameters are sional problem. The dispersion analysis for many differentI the nodal density, the electrical size of mesh, the direction of elements has been done by several researchers [41-[6]. From
propagation of the Incident wave, the type of element, and the the dispersion analysis, we will show that the error can be
type of boundary condition. obtained analytically for the case of an infinite mesh. Fur-

thermore, we will demonstrate, either analytically or numeri-

3 I. INTRODUCTION cally, the effect of various parameters on the discretization
Neerror. Several factors, excluding geometrical considerations,- [N the past several years the use of the finite element wihafc iceiainerraeteeetia ieo h

imethod in electromagnetics has increased rapidly because which affect discretization error are the electrical size of the

of its versatility at handling very complex, arbitrary geome- order of the function used to approximate the fields in each

tries. A primary consideration in any approximate numerical element, the boundary conditions which are applied, and the

technique is the sources of potential errors in the solution. type of field excitation. In this paper, we will consider all

Without a good understanding of the causes of numerical these factors and explain their effects on the discretization

error, one cannot have any confidence in the accuracy of error.

their solution. In the finite element method, a major source ofU error is introduced by the spatial discretization of the prob-
lem domain into elements. Within each element, the behavior 1L ANALYSIS
of the fields is described by a polynomial approximation. Although this paper is primarily a numerical study of
This approximation results in an error, which we will hence- discretization error in the finite element method, a secondaryI forth refer to as the discretization error. goal is to analytically characterize the error in such a way

Currently, there is a widespread belief that the solution that we can gain a better understanding of the causes and
accuracy is dependent mainly on the nodal density per wave- effects of the erro-.. To this end, a simple geometry is chosen' length if we exclude geometrical considerations. The nodal for the study. The geometry is a free space region on which a
density used to generate results in the literature is usually square mesh is embedded in the x - y plane. The geometry
between 10 and 20 nodes/k where X is the wavelength, is assumed to be two dimensional, so the fields do not vary in
Bayliss et al. [1] performed a mathematical and numerical z. The excitation is a plane wave propagating in free space
study of discretization error in which they showed that the and passing through the mesh at an arbitrary angle 01 in the
use of a fixed nodal density does not guarantee accuracy in x - y plane. Because of the simplicity of this problem, the
the solution. They found that the accuracy also depends on analytical solution is known, so comparisons can be easilyS the electrical size of the problem domain. Fang [2] did a made between the exact and the numerical solution.
similar numerical study for the finite-difference time-domain The finite-element mesh covers an a x a square region.
(FDTD) method and showed that the discretization error in An example of such a mesh is shown in Fig. I where we use

I FDTD has the same dependence as the finite element method bilinear four-node square elements in the mesh. The nodal
on the electrical length of the problem domain. Recently, separation is h. For our numerical study, the number of

elements in the mesh is variable. By selecting a uniform
MIanscp received October 31. 1991; revised Jautary 21. 1992. mis mesh, we remove the errors due to distorted elements. Fur-

work was supported in part by the Joint Services Electronics Progrm under thermore, the analysis of the discretization error is greatly
Cmma N0001449-J.1007 with the Ohio State University Research Foun- simplified. It should be noted that the numerical error is
doom.

It. Lee is with the ElecIro&Iene LAborstory, Department of Electrical strongly dependent on the geometry under consideration. ForE Ealhaseri, The Ohio State University, Columbus, OH 93212. example, finer discretization is necessary around a perfectly
A. C. Cmgeliarla is with th Department of Eictrficl and Compue conducting corner because of the rapid field variation near

Eaginaeen. University of Arizona, Tucson, AZ 85721.
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I boundaries cancels out during the assembly of element equa-
tions. Therefore, this term only exists on the outer boundary 3
of the mesh and becomes the vehicle for the application of
appropriate boundary conditions on the mesh boundary.

Using Galerkin's approximation, we choose the expansion I
functions to be the same as the weighting functions. We
consider two specific elements, the isoparametric bilinear
four-node quadrilateral and the isoparametric quadratic nine-

----------- node quadrilateral [7]. In order to simplify the analysis, the
quadrilaterals are chosen to be squares. Both these elements
lead to a matrix equation which is sparse and banded.

B. Dispersion Analysis
It is well known that finite-difference/finite element ap-

proximations to the wave equation are always dispersive.
This means that the phase velocity of the numerical solution
is frequency-dependent even in the absence of any dispersion
in the actual media. We can obtain the numerical dispersion
relation which relates the numerical wavenumber k to the
exact free space wavenumber of the plane wave propagating
through the grid. For the four-node square element, the
derivation of the dispersion relation has been presented in I
[6]. We will review the analysis for the four-node square U

Fig. 1. An a xe finite elemen mesh squae elmnts with sides of length element and also consider a special case for the nine-node
k. The nrgion encompassed by the mesh is asumed to be free space with a
pha= wav incident at an an of *'square element.U

To remove the effects of the boundary condition from the
dispersion analysis, we assume that the mesh is of infinite

terizesuch geometricalctionsideraon ea e seek tocharac-field extent in x and y. We first consider the solution using the
variation iscoet i erro over a r egion whefild fbir-node bilinear square elements. For this choice of ele-se
first briefly review the finite-uement method. Then we will ment, all the rows of the matrix equation are identical. Thus,

discuss the errors in terms of the dispersion relation associ- the numerical dispersion relation is obtained by considering

ated with a given discretization. only the ith row in the matrix equation. The ith weighting
function, which generates row i, has support only over the

A. Finte Element Formulation four elements that share node i, so let us consider the

For the geometry shown in Fig. 1, we must solve the localized grid around node i shown in Fig. 2(a). The equa-

two-dimensional Helmholtz equation. An application of the don for row i is

method of weighted residuals [M] guarantees that the (kh) 2  1+4 1+1 1
Helmholtz equation is satisfied in the weak sense. Assuming -6 16E1 + E. + 4 ,
a TMX(E M, H - AMY, M) polarization, the weighted 3-6+5
residual expression is given by 1 1 . 16 0If [ (,:o + ks I)oj]d (1) 6 I
where the weighting functions i/j(j - 1, 2, ..- ) constitute a where E, is the unknown field quantity at node n. Assuming
se of fmit-order differentiable, scalar weight functions which a plane wave passing through the mesh at an angle 01 with
we choose. The variable k is the free space wavenumber, respect to the x axis, we can write our numerical solution at

and V., _ j /Bax + yaa/8y. By using Green's first identity, node n as
we get E,(x., y.) - 6 -Ji( '.a"÷') (4)

Jf [vE. ,4, -k
2 E4j dSwhere (x,, y) is the coordinate of node nv. Substituting (4) 3

into (3), we can solve for the numerical wavenumber k. The
-, J[j(A VE)] dl m- o (2) general case requires the solution of a transcendental equa-

where n 5 is the line enclosing S and h is the outward unit don. We can consider two special cases. The first is the case
a on where the plane wave is propagating along the x direction

normal on . The field E can be nted by an 0 ). We obtain the dispersion relation
appropriate st of expansion functions. Equation (2) is then
applied toech element in the mesh where Sis now the 113
element itself and aS is the element boundary. Because the - 7' I + (kkh) 2/6. (5)
gometry is fiee space, the integral along SS at interelement I
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Because the expansion function for the fields varies linearly
along the x direction, the above dispersion relation is equiva- F_
lent to the one that we would obtain for the linear three-node 44 5.7 1#

triangular element. Also, since the fields associated with the
plane wave only varies with x, (5) is the dispersion relation
for the one-dimensional linear two-node element. The second
case that we consider is the one where the plane wave is
propagating diagonally across the square mesh (01 = 45").
The dispersion relation for this case is

v1 2 _c1s,[l-(kh)2 /6 1
kh C I + (kh)21 (6) 1.1 146 4e

From (5) and (6). the dependence of k on frequency is (a)
apparent. More specifically, k/k depends on kh where h
k/k-' 1 as kh-O. In both cases, the ratio k/k-' 1 as
kh - 0. 4,4 .11 2 k7 _+17 _ 5.

From Fig. 2(a), we see that node i is coupled to eight
other nodes to form the resulting dispersion relations in (5) 1416

and (6). For the quadratic square element, the dispersion
relation is significantly more complex since node i (Fig. 2(b)) W _1+11
is now coupled to 24 other nodes. It should be noted that h is -
the separation distance between the nodes rather than the 5.12 6M31510 5o 5.14

width of the element. Unlike the bilinear element, the finite 4
element approximation of the wave equation is different for
different nodes in the quadratic element. The rows associated ±L. 114 h 4!L 'k 2

with nodes i to i + 8 differ from those associated with nodes (b)
i + 9 to i + 20 which in turn differ from those associated
with nodes I + 21 to i + 24. Thus, the dispersion analysis is Fig. 2. A localized section of grids used in the disesion analysis. The

two elements considered are (a) the bilinear element and (b) the quadratic
not straightforward. To simplify the analysis, let us consider element.
the special case of a plane wave traveling in the x direction.
The dispersion relation in this case is the same as the h

one-dimensional dispersion relation for a three-node quadratic P"
element (Fig. 3). As the figure depicts, the exterior nodes - 0 0 ', - - -- -
have been assigned odd numbers while the interior nodes

have been assigned even numbers. The finite element equa- Fi. 3. The grid used to evaluate the dispersion analysis for the onedimem-

tion for the odd node E2.,+ is aon quadrac element.

-(5 + 2(kh)2)(E 2._, + E2.+3) The above internal node condensation procedure allows us to

+(40 + 4(kh)2 ) (E 2 , + E2.2) obtain a reduced system of identical equations of the form
(10) for all exterior (odd) nodes. A standard dispersion

+2(-35 + 8(kh)2)E 2.+,=o (7) analysis of (10) produces the following dispersion relation:

while for the interior nodes E2 , and E2,+2 we obtain, (kh) 4 _- II(kh)2 + 15]
respectively, k 1 I) Cos- I 12

(10 + (kh)2)E2._1 + (_20 + g(kh)
2)E,. k kh IV (kh)4 + 4(kh)2 + 15J

+(10 + (kh) 2 E 2 ,,+ = 0 (8) A simple study of the expression under the radical reveals
1 that for frequencies below cutoff (kh s u) the numerical

(10+(kh)2 ) 2 ,,+ (-20 + 8(kh)2 )E2 ,+2  solution does not exhibit artificial damping, except for a
cutoff region given by v/2-.5 S kh :s 0 .

+ (10 + (kh)2£2,+3 - O. (9) Without the introduction of boundary conditions, the error

Equations (8) and (9) are then used in (7) to eliminate the can now be determined from (5) and (11) for the case of a

interior nodes £3., E2..+2 and get plane wave traveling along the x or y direction in a mesh
S+with square elements which have either bilinear or quadratic

-(kh) + 4( + + E 2.+ 2) variation. Furthermore, (6) can be used to find the error

when the plane wave is traveling* diagonal to the mesh
2[3(kh)- 26(kh) 2 composed of square ements with bilinear variation. The
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exact solution E, is given by

-6 Jk(xco&#'+.,ail') (2E. =e (12)

From our dispersion analysis, we find that the numerical I
solution E, can be written as

- e~k~x~'+Yhi~'). (13) - .i 7 v ~

The predicted error in the absence of boundary conditions -P -
does not simulate the actual error when the boundary condi-
tions are present, but it provides an approximate quantitativeW -

measure of the expected error. Therefore, a chart that pro- lr
vides the error in the absence of boundary conditions can be ---

very useful in choosing the nodal density for a given prob-
kim. From our analysis, a plane wave that travels a distance
1, accumulates a phase error of 0.. = (k - k)! rad in the I __ _

absence of boundary conditions. In Fig. 4, the normalized --

phase error (in degrees per wavelength) 0.,, = (k - k) is ....... .... ....... . ....... __

plotted as a function of the nodal density normalized by the
wavelength, i.e., X/h. Three curves are shown. Two of the
curves correspond to an x propagating wave traveling in a I
mesh composed of either bilinear or quadratic square ele-
ments. The third curve is the case of a plane wave travelingdiagonally along a mesh composed of bilinear square eln- Fig. 4. Plot of the phase error for an infinite mesh. Remits are shown for aphane wave propagating through the mesh at two different angles (0' = 0*
ments. From this figure, we can estimate the phase error for and 45") for the bilinear element and one angle for the quadratic element
a given mesh in free space. As an example, consider a mesh (W' = 0").
similar to the one in Fig. 1, where a = 1OX. Assume that we
are using bilinear square elements where the nodal separation plane wave. The second is the essential (Dirichlet) boundary I
is X/h = 10. If a plane wave is incident at an angle of condition, where we specify the value of the fields on the

' = 0%, then we can estimate from Fig. 4 that there will be boundary. A third possibility is the natural (Neumann)
a phase error of 56" at the right border of the mesh relative boundary condition, but this case is not considered because
to the left border of the mesh. the size of the error produced is exactly the same as the error

It should be noted that the finite element expansion func- from the essential boundary condition.
tion varies bilinearly along the diagonal direction, whereas For the radiation boundary condition, we consider a plane
the variation along the x and y direction is linear. Because wave propagating in both the diagonal and the x direction. I
of this variation, the largest phase error occurs at 0 - n 90", The differential equation is given by
and the smallest error occurs at 01 = 45" + n 90" where n +
is an integer. The error for any other angle should be (vi, +k 2)E(x,y)= 014
bounded by the error given for these two sets of angles. where the boundary conditions for the diagonally propagating
Thus, the numerical solution is dependent on the angle of plane wave are
incidence of the incoming wave. This numerical anisotropy E(x = 0, y) = e
has also been observed in the FDTD method [8]. It is also a0 k)
interesting to observe that the phase error is significantly less (ax + J• ) E(x = 0, Y) = 0,
for the quadratic element than for the bilinear element. From 0
the point of view of computational efficiency, we should be E(x, y = 0) f ,
comparing both the phase error and the computation time (a 0 k)
asociated with each element. In the next section, we perform T +j--- E(x, y =a) - 0. (15)
these comparisons by running several numerical experiments. For an x propagating wave, the boundary conditions are

M . BOU DARY CO ND IO NS E(x ffiO, y) i 1, a + Jk E(x f- , y) =fi ,
In the dispersion analysis for an infinite mesh, we showed )ax

that the discretization error can be strictly characterized as a 8E(x, y - 0) BE(x, y = a)
phase error. For realistic problems of interest, the mesh must 0y y0.
be uncated, and a boundary condition imposed at the mesh 1

boundary. The boundary condition can significantly alter the (16)
dhcre0ization error that we obtained for the infinite mesh. To Before we calculate the numerical tolutions to the above
"dhow this effect, we consider two boundary conditions. One finite element problems, let us consider the case of the x
is a radiation boundary condition that perfectly absorbs the propagating wave more closely. This problem is really one
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dimensional. The related one-dimensional numerical problem and the phase error at that same point to be
for (14) and (16) is described by the differential equation

d2(17) phase error= ,0 -e. (22)

. +01 Another parameter of importance is the percentage rms error
with boundary conditions over the entire mesh, which we define to be

t(O)-I +jk t(a)m 0. (18) a y 1 1/2
rms error = E(x , )- E(x, y) ddyj

The term E is used to distinguish the numerical solution a L10 o
from the analytical one. The boundary conditions are the
ones associated with the exact wavenumber k. Actually, X 100%. (23)
E(x) does not satisfy (17), but rather the system of difference
equations pertinent to the type of element used in the numeri- To show the effects of various parameters on the dis-
cal discretization. Nevertheless, the model of (17) and (18) cretization error, numerical solutions are generated for three
has a straightforward analytic solution that allows us to square regions which differ from each other in electrical size
illustrate the effects of the radiation condition on the dis- (a = 0.4k, 1.2k, 4.OX). Four nodal densities (X/h = 10,
cretization error in a simple manner. The resulting solution is 15, 20, and 25) are considered for a plane wave incident at

angles of 0 = 0 and 0' = 45". Bilinear square elements
te- - J sin kx (19) are used to compute solutions for both boundary conditions.

In addition, we generate numerical solutions for the essential
where 6 = k - k. 6 can be assumed to be small if we boundary condition using quadratic square elements.
consider nodal densities greater than five nodes/X. From In Table I, we present numerical results for the radiation
(19), we can see the effect of the radiation boundary condi- boundary condition using bilinear square elements. The
tion directly. The first term in (19) is the solution for the case columns marked Max. Mag., and Max. Phase indicate the
of an infinite mesh. The second term is the perturbation due maximum magnitude and phase error, respectively, over all
to the boundary condition. The periodic behavior of the the nodes in the mesh. The rms error is also shown in the
perturbation will be evident in the plots of error shown later table. The remaining two columns show the average magni-
in this paper. For the case of the diagonally propagating tude and phase error over all the nodes. By examining the
wave, there is no one-dimensional equivalent. Thus, we must table it is evident that the majority of the error for #1 = 0" is
rely on a numerical solution in this instance, in the phase, as predicted by the one-dimensional analysis. In

For the case where essential boundary conditions are ap- fact, the error is mostly phase error even for 4' = 45e. The
plied, we consider the same differential equation as in (14) amount of phase error is very close to the predictions from
with the boundary conditions, Fig. 4 for an infinite mesh. The size of the error is dependent

E(x - 0, y) - •-jtJ' we#, on the electrical size of the mesh as well as the nodal density,
which agrees with the results in [11. It should also be noted

E(x - a, y) . e- Jk(*c'+ym&*') that the error for a diagonally propagating wave is signifi-
candy less than for a wave propagating in the x direction.E(x, y - 0) - e-Jkxc*', The distribution of the error across the mesh is not evident

E(x, y - a) = e-Jik('XmC#04'÷1). (20) from the table. In Figs. 5 and 6, we plot the magnitude and

Note that (20) describes the boundary conditions for & plane phase errors as a function of position for the case a = 1.2 k

wave of arbitrary incidence. Unlike the radiation boundary X/h - 20, and 0' - 0". We see that the phase error accu-

condition, there is no situation where the numerical solution mulates as the wave travels across the mesh. Also, a periodic

degenerates to the one-dimensional case. Although the analyt- ripple is present in both the magnitude and phase error plots

ical solution for the x propagating wave is one dimensional, as predicted from (19). The errors do not vary with y, so the

the numerical errors due to the essential boundary condition numerical solution is one dimensional.

ame two dimensional; therefore, it is necessary to evaluate the In Table 11, we consider the numerical solution for thesoltio nmercaly or heessntil ounan Thebsie of osie the ero saf nct eiono coal desitolectricalth
solution numerically for the essential boundary conditions. essential boundary condition using bilinear square elements.

In order to describe the error, we introduce several error The size of the error as a function of nodal density, electrical

P orameted, Let us define the exact solution to be E w size of mesh, and angle of incidence of the plane wave is

I E l e and the numerical solution to be t - I t I . Then similar to the case for the radiation boundary condition, but

we define the percentage magnitude error at some point the characteristics of the error is significantly different. Both

(x,, yin) In the mesh to be magnitude and phase error are present. In addition, the
growth of the error with increasing mesh size is considerably

ro I (X, y.) I - I •X(., Y.) faster than for the radiation boundary condition. The distribu-
magtude -E(x', y.) X 100% ton of the magnitude and phase Error over the mesh ar

shown in Figs. 7 and 8. The geometrical parameters (a,
(21) X/h, #') are the same as those shown in Figs. 5 and 6. The
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Fig. S. Plk of die magnitude error of E, over the grid for the radiation Fig. 6. Plo of the phae error of E, over c grid forte radiation
boundary condition. boundary condition.

TABLE I TABLE I1
ERtOtS ASSOCIATED wIrH THE RADIATiON BOUNDARY CONDITION Etoas AssocIATED WITH ThE EuSENTIAL BDOUNDARY CONDnITIO

Max. Average Max. Average RMS Max. Average Max. Averase RMS
#I Ma8. MaR. hase Phase Error #I Mag. Mba. Phase Phase Error

) )/h (des) (S) M (des) (des) M a )/h (des) (S) (S ) (deg) (deg) (%)
10 0 0.90 0.50 2.74 1.60 3.42 10 0 2.06 0.51 0.32 0.06 0.89

0.4 X 15 0 0.46 0.24 1.23 0.73 1.54 0.4 X 15 0 0.91 0.27 0.14 0.04 0.42
20 0 0.27 0.14 0.70 0.42 0.87 20 0 0.51 0.17 0.08 0.03 0.25 I
25 0 0.17 0.09 0.45 0.26 0.56 25 0 0.33 0.11 0.05 0.02 0.16

10 45 1.32 0.40 0.95 0.41 1.10 10 45 1.03 0.25 0.15 0.03 0.44

0.4), 15 45 0.58 0.18 0.43 0.19 0.50 0.4 X 15 45 0.46 0.14 0.07 0.02 0.21
20 45 0.32 0.10 0.25 0.11 0.23 20 45 0.26 0.09 0.04 0.01 0.12 U
25 45 0.21 0.06 0.16 0.07 0.18 25 45 0.16 0.06 0.03 0.01 0.08

10 0 1.38 0.67 6.46 3.11 6.62 10 0 29.37 7.11 13.00 3.56 14.42

1.2). 15 0 0.64 0.32 2.97 1.44 3.03 1.2), 15 0 12.50 2.92 5.36 1.66 6.09
20 0 0.37 0.18 1.69 0.82 1.72 20 0 6.78 1.65 3.31 0.95 3.38 m
25 0 0.24 0.12 1.09 0.53 1.11 25 0 4.25 1.06 2.12 0.62 2.16

10 45 2.02 0.57 3.38 1.43 3.21 10 45 12.40 2.33 8.06 1.58 6.17

1.2 X 15 45 0.90 0.25 1.75 0.65 1.45 1.2 k 15 45 5.03 1.25 3.37 0.72 2.64
20 45 0.51 0.14 0.99 0.37 0.82 20 45 2.79 0.71 1.91 0.41 1.48
25 45 0.32 0.09 0.64 0.24 0.53 25 45 1.77 0.46 1.21 0.27 0.94

10 0 1.46 0.68 23.07 11.70 23.58 10 0 75.82 24.30 49.73 17.40 45.39
4.0 X 15 0 0.72 0.35 10.42 5.24 10.63 4.0)k 15 0 62.27 19.11 23.49 10.63 32.86

20 0 1.12 0.24 5.91 2.97 5.98 20 0 46.20 14.40 18.02 6.85" 23.94
25 0 0.26 0. 13 3.78 !.89 3.83 25 0 34.32 10.89 12.27 4.114 17.72

10 45 3.39 0.83 14.76 5.35 11.40 10 45 69.65 15.00 32.14 6.Wo 27.17
4.0 X 15 45 1.51 0.37 6.64 2.41 5.17 4.0 ) 15 45 23.20 5.30 13.06 2.70 9.96

20 45 0.85 0.21 3.75 1.37 2.92 20 45 12.06 2.81 7.21 1.53 5.35
25 45 0.55 0.13 2.41 0.83 1.38 25 45 7.54 1.79 4.00 0.99 3.36

errors are in the form of lre standing waves in both the error is 17.7'T for 0' - 0. The corresponding error for the I
npgitude and phase with a one wavelength peiodicity alonW radiation boundary condition is only 3.8%. It is evident that

the direction of propagation. We me that the errors are two the solution with the radiation boundary condition is more
dimensional, which produces a two-dimensional nuerical Computationally efficient for the simple geometry considered
solution to a one-dimensional problem. The differences in the here.
mnerical results between the two boundary coditions imply The next consideration is the effect of changing the type of

dhat the effect of the boundary condition on discretiaon element used in the mesh. The errors are presented in Table
ror i variable; therefore, in choosig a boundary mnca- M for the quadratic nine-node square element with essential

dio scheme, we must consider not only the accuracy and boundary conditions. A similar table is n considered for the
mmerical efficiency of the scheme but also Its effect on the radiation boundary condition because the errors in this caew

dmcretization error. For a - 4), we see from Table 1 that ar basically the sam as those ined from the infinite
11e essential boundary conditions produce unacceptable er- mesh geometry. If we compare the errors obtained in Table

rs eve for a nodal density of 25 nodes/h where the rms 1 to those shown in Table M, we observe one major
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Fig. 7. Plot of the magnitude emr of E. over the grid for the eential Fig. 8. Plot of thepse e of E over the grid fothe esAuam

boundary condition. -ond conditon.

TABLE IM
difference. The size of the error has been substantially re- Eos AssOCtATzD wr m •r E L BoKAm
duced by the use of quadratic elements. In many instances, MR QUAmAnC ELzmE's

the error has been reduced by a factor of ten. Mui. Avep Max. Avera RMS
As we mentioned earlier in this paper, a major concern in *' Mag. Mag. Has PHam Eror

the finite element method is the computational time necessary a X/h (deg) (%) (M) (deS) (deW) (M)

to obtain a solution for a given accuracy. Usually, most of 10 0 0.180 0.054 0.026 0.005 0.092

the computation time is spent in the solution of the finite 0.4 X 15 0 0.051 0.014 0.005 0.001 0.022
20 0 0.016 0.005 0.001 4.2e-4 0.007

element matrix equation. Assuming the use of a banded 25 0 o.0o7 0.002 S.8e.4 1.-4 0.003

matrix solver, the number of floating point operations needed 10 45 0.060 0.018 0.00o 0.002 0.031

to solve the matrix equation is dependent on the number of 0.4 X 15 45 0.018 o.oos 0.001 s.0e.4 0.007
unknowns and ft half-bandwidth of the marix. The nm-eri- 20 4s 0.006 0.O 5.2e4 IL.4 o.W0

cal errors in Table 1 and Il are based on a nodal density 25 45 0.002 7.2e.4 2.2e4 7.2e-5 0.003

rather than element density, so the number of unknowns is 1 0 0 2.300 0.50 1.250 0.330 1.183

the same for both types of elements. The difference is in the 1.2 X 15 0 0.490 0.120 0.260 0.072 0.247
20 0 0.155 0.039 o.o6 0.024 0.0o0

half-bandwidth of the matrix. From Fig. 2, we see that for 25 0 0.066 0.016 0.034 C.OW 0.033

the bilinear element, each node is connected to eight other 10 45 0.560 0.130 0.380 0.074 0.283

nodes while for the quadratic element, each node connects to 1.2 X 15 45 0.110 o.28 0.075 0.016 o.os0
24 other nodes. Thus, the half-bandwidth of the matrix for 20 45 0.036 0.009 0.024 0.005 0.019

the quadratic elements is greater than the half-bandwidth of 25 45 0.015 0.004 0.010 0.002 0.006

the matrix for the bilinear element. In Table IV, we record 10 0 21.30 7.36 7.00 2.95 11.83

the CPU time (for a Cray YMP) needed to fill, factor, and 4.0 ) 15 0 5.70 1.84 1.68 0.69 2.92
20 0 1.91 0.62 0.54 0.22 0.97

solve the finite element matrix equatiort for the cases where 25 0 0.79 0.26 0.23 0.09 0.40

we use bilinear and quadratic square elements with essential 10 45 2.25 0.52 1.36 0.30 1.05

boundary conditions. Also, the table provides the rms error 4.0), IS 45 0.48 0.11 0.27 0.06 0.21

and the half-bandwidth of the corresponding matrix equation. 20 45 0.15 0.04 0.09 0.02 0.07

From the table, we see that the half-bandwidth increases by a 25 45 0.06 0.01 0.04 0.01 0.03

factor of two when the elements are switched from bilinear to
quadratic. The corresponding increase in the computation sponding increase in accuracy means that a smaller nodal
time is anywhere from a factor of 1.03 to a factor of three. density is necessary for a given accuracy requirement. In
Although the computation time is greater for the quadratic most cases, the increase in memory requirements due to the
eeanent, the gain in the accuracy of the numerical solution larger bandwidth for quadratic elements is more than out-
suggests that this element is much more computationally weighted by a decrease in memory requirements due to the
efficient. As a example, consider the cue where a - 4X. smaller number of unknowns.
The solution obtained for quadratic elements with a nodal
density of )/h - 10 is considerably better than the solution IV. CONCLUSION
obtained for bilinear elements with X/h - 25 while the From the results of this study on discretization error, there
computation time for the bilinear elements is seven times are several observations to make. First, the fact that the
greater than the quadratic cue. Another consideration is the discretization error increases with the electrical size of the
memory fequirements for a given problem. Although the mesh has serious implications with respect to the approximate
half-bandwidth is largWr for quadratic elements, the corre- radiation boundary conditions [91, which require the mesh to
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TABLE IV
COMPARIsoN op E~xots BETwtEN THE BILINEAR AN4D QUADRATIC CASE. THE. COMPUTATATION

Tkius NECESSARY To Fus., FAcTOa, AND SOLva Tma CORREsspowDNG FNITam LEmiENT
MATRICE ARE ALSO LISTE

Bilinear Quadratic
a X/h #'(deg) HEW CPU (s) RMS Error (S) 113W CPU (s) rms Error(%

10 0 9 5.9e-3 0.39 14 6. 1e-3 0.092
0.4 X 15 0 13 1.4e-2 0.42 22 1.6t-2 0.022

20 0 17 2.6e-2 0.25 30 3.le-2 0.007
25 0 21 4.3e-2 0.16 38 3.3e-.2 0.003

10 45 9 3.9e-3 0.44 14 6.1e.3 0.031
0.4) 15i 45 13 1.4e-2 0.21 22 1.6e-2 0.007

25 45 217 2.e-2 0.06 30 53. l-2 0.003
20 45 217 4.3e-2 0.02 30 531te-2 0.003

t0 0 25 6.5%-2 14.42 46 8.5e-2 1.1833
1.2 Xh 15 0 37 0.172 6.09 70 0.26 0.247

20 0 49 0.383 3.38 94 0.70 0.060I
25 0 61 0.712 2.16 I18 1.44 0.033

10 45 25 6.3e-2 6.17 46 I.Se-2 0.283
1.2) X I1 45 37 0.172 2.64 70 0.26 0.058

20 45 49 0.333 1.48 94 0.70 0.019
25 45 61 0.712 0.94 118 1.44 0.006

10 0 11 1.68 45.39 ISO 3.32 11.33
4.0)k Is 0 121 5.29 32.86 238 13.3 2.92

20 0 161 16.10 23.94 313 47.20 0.97U
25 0 201 29.00 17.72 398 86.30 0.40

10 45 111 1.68 27.17 153 3.32 1.05
4.0 X~ 15 45 121 5.29 9.96 238 13.30 0.21I

20 45 161 16.10 5.35 313 47.20 0.07

25 45 201 29.00 3.36 398 86.30 0.03

etuend a signifcant distance away from the geonetry of 131 A. F. Peltnfts sa6 1.. Daca, "EnI intoe Suitt lne discrefiza-
don, of the scalar Helmholtz equation over electrically larg regions,"interest in order to obtain an accurate solution. More rigor- IEE Microwav Guided Wowe Left.. vol. 1. pp. 219-222, Aug.

ous truncation techniques, such as the hybrid FEM/integral 1991.
eqution technique [101 or the bymoment method [11], al- 14] 0. W. Ptatznmn. "Somm ie m claracteristics of finie element

lowsMr te ue ofa carse meh toobtinitea6 models," A. Comtp. Phys., vol. 40, pp. 36-63, 1981low fr te se f corsr mshto btin heSame 151 R. Malle ad T.elytsbk *Diaperio.maysas of Sate P elmn
accuracy because the mesh can be truncated close to the 0. 1'~ of die rwo-Iimentional wave equation," Int. .1.
geometry of interest. The second observation is tha th um. Methods Eng., vol. 13, pp. 11-29, 1982.

s6o. .LutincK o D.xwl' h ypuhei ,eio pann .W tabh,"u itelmnt.solution with quadratic elements is always more computation- s6o. .lytinc of Maxwell'seqain fod 3. W. ahber n Fni te- elemntiS
ally efficient than the solution with bilinear elements. Even J. Comput. Pkys., vol. 58. pp. 246-269, 1985.
the memory Storage requirements are usually smaller for 17 E. 3. Becker. 0. F. Carey. and J. T. Oden, Faite Elements AR

quadratic elements. A &Wir point to noe is the effect of te Introdluction, vol. 1. Benlewood Cliffs NJ: Prentice-Hall, 1981.
t18) A. C. Cangellaris, "Time-domain conyuetation of elecromagneticI

boundazy condition on discretizaton error. The results indi- wave scattering by the method of conforming boundazy elements,"
cm doat radiation boundary conditons produce lower levels Ph.D. dissertation, Dept. Elec. Eqg. Comput. Sci., Univ. Califoria.

of eror han ssetialcondtion. Fnall, ~ ~ Berkeley, CA, 198.
of m tan ssntil bundryconitins.Fiall, w Shw_ A. Dayliss, M. Ounzbergler, and E. Turkel, -Boundary conditions for

tha the discretization error can be analytically charackteized the anuerical isouton of ellptic equa1iltions inIntessnreio ns
* phase error for an infinite mesh. The curves in Fig. 4 ca SIAMJ A Al. Math., vol. 42 pp. 430-451, 1982.
be used as an initial estimate on the size of the error as a 110) B. H. McDonald End A. Wexler, "Fnite element solution of un-

buddfedproblems," IEEE 7hens. Mkcrowmew Thee, Tech.,
hmction of nodal density, element type, and fth eleftrical vol. h(TI-20, pp. $41-847, 1972.
Size of the mesh with the understanding that erors; due to 111) A. C. Cuigellarls aod R. Lee. "The Iymoneatmeto for two-

and itzns ae ~dimensionsl electrmagnetic scattering," ZUE 71mg. Anteuneo
Poetry adboundary coim wentinopoated ino Propqet., vol. 38, pp. 1429-1437, 1990.the curves. 1121 It. Lee, --Rigorous gWridmcation for dhe fiite elmn solutio ofI

AcKNOWLDelecT omg -etc scatering problems," Ph.D. dineustatao Dept. Elec.
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Two-Dimensional Angle and Polarization z
Estimation Using the ESPRIT Algorithm

Jian Li and R. T. Compton, Jr.

Abstract-It is shown how the ESPRIT algorithm my be used with a
square array of crossed dipoles to estimate both the two-dimensional
arrival Eigles and the polarizations of incoming narrow-band signals.
The ESPRIT algorithm exploits the invariance properties of such an Y
army so that both angle and polarization estimtes may be computed.
Some typical examples showing the use of this approach are presented. . . 7

I. INTRODUCTION

The ESPRIT algorithm 11) can be used with an array of cross-
polarized elements to estimate both the directions of arrival (DOA) .
and the polarizations of incoming plane waves. In a previous paper
[21, the authors described how to use ESPRIT with a uniform linear
array of crossed dipoles to compute signal directions in one spatial
angle, along with the polarizations. In this communication, we Fig. 1. Crossed dipoles.
generalize these results to two spatial angles. The arriving signals
are assumed to be narrow-band, so the signals received on different
array elements differ only by a phase factor. into the array, we consider the polarization ellipse produced by the

In this correspondence, we consider a square array consisting of electric field as the incoming wave is viewed from the coordinate
I) pairs of crossed short dipoles. We show how the ESPRIT origin. Note that unit vectors e., e,. - e,, in that order, form a
algorithm can be used with such an array to estimate signal direc- right-handed coordinate system for an incoming signal. Suppose the
tions in two spatial angles and signal polarizations. We also illus- electric field has transverse components E, and E.:
trate the effects of signal direction and polarization on the perfor-
mance of the estimator. E = Ee e + ee. (1)

H. PRonLF.m Foa•muLAToN

We consider the array shown in Fig. I. The array consists of L2  (We call E, the horizontal component and E, the vertical compo-
pairs of crossed dipoles, or a total of 2 L2 elements. The signal from nent of the field.) In general, as time progresses, E, and E8
each dipole is to be processed separately. The ilth dipole pair, describe a polarization ellipse as shown in Fig. 2. Given this ellipse.
where i, I - 1, 2,.., L, has its center at (x,y)=((i- 1)y(- we define a and P to be the ellipticity and the orientation angles.
1)). The distance 6 between adjacent dipoles is assumed to be a respectively (see [2)). We define 0 to be in the range 0 s 0 < x. ahalf-wavelength. At the a cth dipole pair, xs(t) denotes the signal is always in the range - r/4 s a, : w/4.received ngthe As dpe and y11 (t ) the signal For a given signal polarization, specified by a and 3. the electricreeived on the x-axis dipole and y.(t) the signal received on the field components are given by (aside from a s.ammon phase factor)yV-axis dipole.

Suppose K (with K S L2 ) continuous wave (CW) signals im-
pinge on the army from angular directions (ek, *), k- E,=Ecos'y, E,=Esin-yei" (2)
1,2,." ", K, where r, 0, and 0 denote standard polar coordinates,
a shown in Fig. 1. Assume each signal has an arbitrary elliptical
decrtnagetic polarization 15). where y and i can be computed from a and 0 [6], [2]. y is always

To specify the signal polarizations, we use the following defini- in the range 0 :s y ss/2, and i is in the range - v s ,1 < r. a
tios.. Given a transverse electromagetic (TEM) wave propagating and f can also be computed from -V and , [61, (2].

Thus an arbitrary plane wave coming into the array may be
characterized by four angular parameters and an amplitude. For

Manuscrlpt received December 17, 1990; revised January 31, 1992. example, the kth signal, k - 1,2,..", K, will be characterized bN
This work was supponed in pan by the Joint Services Electronics Pro- p i

gtmn under Contract N00014-89-J-1007 with The Ohio State University its arrival angles (Ok, and its polarization el(pticity angle a o and
Research F'natio, orientation angle 16, and its amplitude E, (i.e., Ea is the value of

Jis LA was with the Deparent of Electrical Engineering, The Ohio State E in (2) for the kth signal). We will say the kth signal is defined by
University, Columbus. OH. She is now with the Department of Electrical (Ok, *A, at, O,, Ed).
Engineering, University of Kentucky, Lexington, KY 40506. We assume that each dipole in the array is a short dipole whose

R. T. Compton, Jr. is with the Department of Electeissm Engineering, The
Ohio Stes Uanversity, Columbus. OH 43210. output voltage is proportional to the electric field along the dipole.

MEE Log Number 9200359. An incoming signal with arb.trary electric field c, mponents E. and

0018-926X/92503.00 0) 1992 IEEE



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. 40. NO. 5. MAY 1992 551 5
E. given by

z,,(t) ,F uts:(t)p''q'-' + ",(.), i, I 1,2,-...-. L
k-1

(9)
- £ where Uk, Ph, qk, and S,,) are given by (7). (5), (5), and (8).

"respectively, with subscript k added to the amplitude E and to each
angular quantity.

Let z(1), s(t), and n(t) be column vectors containing the received
signals, incident signals, and noise, respectively, i.e

Fig. 2. Polarization ellipse. z(t) = [z•(t) ZIL(t) " 1(t) ... ZIL(1)] (1o) L

SWt = [si(t) s2(t) ... s'(t)]" 11
E* has x, y, z components:

E = E,,e + Ese* n(t) = [-T"(t ) n-in(t) " LL1(I (12)]3

= (Ep cos 0 cos - E. sin O)e. where (')T denotes the transpose. The received signal vector is then

+(Escos sinc + E, cos O)e, z(t) = As(t) + n(t) (13) 3
+(Ee sin O)e.. (3) where A =[a I[ a 2 ... aKI is a 2L 2 x K matrix with each col-

umn given by
When E. and E, are expressed in terms of E, y, and i? as in (2), u

the electric field components become a, = [UTU urq, ... uIq" _L-1 Urpk UT pkq I
E[(sinycos cos e"' - cos y sin O)e. T -I ... ... T-L- I UT, L-1

U P 'qk '] "Uk uk 14 3k
+(sin 3 cos 0 sin 4$eJ" + cos y csOSd)ey, .... U rTL-1"L-11T't . (4

-(sin y sin 9ej')e,]. (4) The columns at are assumed linearly independent. They define a
K-dimensional signal subspace in a 2 L2-dimensional space.

Let us define the space phase factors By assuming linearly independent columns in A, we are exclud-

2,- 2,6 ing from consideration degenerate cases, such as when two signals
P = e'" sin 0 cos 0, q = eJ"5- sin 0 sin 0, (5) arrive from the same direction with the same polarization, when

more than two signals of arbitrary polarization arrive from the same
where X is the wavelength of the signal. Including the time and direction, or when a signal yields zero output at the x- and y-axis I
space phase factors in (4), we find that an incoming signal character- dipoles at the same time.

ized by (O, 0, a, $, E) produces a signal vector in the crossed We assume that the element signals are sampled at N distinct
dipole pair centered at (x, y) = ((i - 1)5, (1 - 1)6) as follows: times t,, n = 1, 2,'- -, N. The problem of interest is to determine

the quantities (9 k, Ik, ak, Ik), k = 1,2,'", K, from the mea-
|"X"t| J US(t)pi- qI-1 (6) surements z(t.), n = 1,2,"- ,N.

m. APPLICATION OF THE ESPRIT ALGoRitrMrm

where The array geometry described above possesses several invariance
= sin -f cos 9 cos 0ei' - cos. - sin 0 (7) properties that may be exploited by the ESPRIT algorithm. We shall

sin cos 0 sin OeJ + cos •y cos (7 first consider the case where the array covariance matrix and the
and number of incident signals are known. We then consider the practi-

cal situation where only a finite number of data samples is available
s(t) = Ee t+ (8) and the number of incident signals is unknown.SThe array covariance matrix has the form

with w the frequency and 0 the carrier phase of the signal at the 
1

coordinam origin at I = 0. R = E~z(t)zH(t)} = Ro + o21 (15)

We assume that K such signals, specified by (8k, 0k, Ck, k,0  where
E0). k - 1, 2,'", K. are incident on the array. The carrier phase RH = (16) I
angles Ok are assumed to be random variables, each uniformly =ARSAH

distributed on [0, 2 ar) and all statistically independent of each other. (.)" denotes the complex conjugate transpose, R, - E{s(t)SH(t))
In addition we assume a thermal noise voltage vector njl(t) is is the source covariance matrix, and E(-) denotes expectation.
present in each signal vector zjl(t). The ha,(t) are assumed to be From the array covariance matrix, the signal directions and

zero mean, complex Gaussian processes statistically independent of polarizations may be calculated as follows [11, [7. Let X, + o2 a
each other, with covariance a.l, where I denotes the identity A2 + a2 2 2t XX + v2 > a 2 . 2 be the eigenvalues
matrix, of R, and e,,e2 ,.-. e . be the corresponding

Under these assumptions, the total signal vector received by the orthonormal eigenvectors. Since the noise contribution to R for this 3
crossed dipole pair centered at (x, y) = ((i - 1)8, (1 - 1)6) is ideal case is simply V21, the eigenvectors of R are also the

I
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eigenvectors of R0 . It can be shown that the columns in E, = [e, k = 1,2...., K, of 4, are the eigenvalues of the unique matrix

e2... e span the same signal subspace as the column vectors in 1"r = T- ',T that satisfies
A [3]. Therefore, there exists a unique nonsingular T such that

E = AT. (17)E, EV.(1
With multiple incident signals, it is necessary to determine the

The columns in E, are the signal subspace eigenvectors. The grouping of the eigenvalues of IV,, *., and I',, i.e., we must
signal directions and polarizations are computed from them. determine which eigenvalues of to, correspond to which eigenval-

Consider first the calculation of the space factors Pk, k = ues of #9 and to which eigenvalues of *,. One way could be to use
1,2,'", K. From Fig. 1, we note that the overlapping subarrays the MUSIC spectrum (3] to determine the grouping [8]. This
consisting of the first and the last L - I y-axis rows of the crossed method, however, requires finding the extra eigenvectors eK,1,
dipoles are the same except for the displacement 6 parallel to the eK÷ 2 ,..., e2L2 and searching over K 3 possibilities. Instead, we
x-axis. For the kth incident signal, the displacement 6 results in the introduce a different approach below.
space factor Pk. The subvectors of a k consisting of the first and the The proper grouping of the eigenvalues of Vp, *,, and t, may
last 2L(L - 1) elements of Sk differ by the factor ph, as can also be determined in two steps: 1) by pairing the eigenvalues of VI'
be seen from (14). (Note that uk is a two-element column vector, as and f 0. and 2) by pairing the eigenvalues of IV, and *,. To pair
in (7).) Let AP, and Ap2 be the 2L(L - 1) x K submatrices of A the eigenvalues of V. and t., note that
consisting of the first and the last 2L(L - 1) rows of A, respec-
tively. Then A. 2 = A,,t,, where 40, is the diagonal matrix with VIq = Vn-',p = T-t;t,,T. (22)
diagonal elements pt, k = 1, 2,.'', K. Let Ep, and E. 2 be the Thus the eigenvalues 4k of V,, k 1, 2,..., K, are the ratios
2L(L - 1) x K submatrices formed from E, in the same way that between the elgenvalues of V,, and their corresponding eigenvalues
A,, and A,, 2 are formed from A. Then the diagonal elements Ph, of V" . Therefore, for kI = 1, 2,''., K, the eigenvalue of V' that
k = 1, 2," ", K, of #, are the eigenvalues of the unique matrix
Vcorresponds to the eigenvalue p. of V,, is the element in the set,P ={tqk2' k 2 = 1,2,..., K) that ccrresponds to the minimum of

E2= Ep,,V,. (18)Ph

Consider next the calculation of the space factors qk, k = 1I.1 - 4k, k2, k 3 = 1,2,.-., K . (23)
1,2,''", K. From Fig. 1, we note that the overlapping subarrays I

consisting of the left and the right L - I x-axis columns of the Similarly, the eigenvalues of P,,, i 91 V,,.*, k= 1. ,. K,
crossed dipoles are the same except for a displacement 6 parallel to are also the ratios between the eigenvalues of V, and their corre-
the y-axis. For the kth incident signal, the displacement 6 results in sponding eigenvalues of *,. Thus the eigenvalues of IV and *,
the space factor qk, as can also be seen from (14). The subvectors can be paired in the same way as those of V,, and Vq. From the
of at consisting of the elements Of 9 k numbered 2 L(i - 1) + I and paired sets of eigenvalues of t., and t. and of f,, and *,, we can
2L(i - 1) + I + 2, respectively, for I = 1,2,.'. ,2(L - 1) and determine the grouping (Pk, qk, rrk), k = 1,2,'--, K.
i = 1,2,''', L, differ by the factor q,. Let A q, and A 0 2 be the The arrival angles, ellipticity angles, and orientation angles can
2L(L - 1) x K submatrices of A consisting of the rows of A be computed from the sets (Pk. 'qik rk), k = 1,2,.', K. The
numbered 2 L(i - 1) + I and 2 L(i - 1) + I + 2, respectively, I = arrival angles (0k, Ok), k = 1,2,..., K, are calculated from Ph
1,2,-..,2(L- l)if= 1,2,...,L. Then A.2 f A qto, where *q and qk as
is the diagonal matrix with diagonal elements qk, k = 1,2,''", K.
Let E91 and E.2 be the 2L(L - 1) x K submatrices formed from O= sin-' -- [arg2 (P)+arg2 (q,)]21 (24)
E, in the same way that A q, and A 0 2 are formed from A. Then the 21r6
diagonal elements qk, k = 1, 2,'' ', K, of *, are the eigenvalues , arg (qk) 1
of the unique matrix Vq = T-'*0 T that satisfies tan-I arg (25)

2 -To determine the ellipticity angles a,, and the orientation angles
Finally, consider the calculation of the ratios r, from which the 1,. we must first find 7k and Yk from rk. yt e [0, r/2] and

polarization angles may be calculated, where rk is the ratio between 17 C [r, ir) can be determined from
the first and the second elements of ot, i.e..

sin Xkcos0,cos he•k -Oo COS skin ', , tan-( CO), (26)
S Siny vCOS, sin Oyt + C 'Vi C 40k lk = arg 4k) (27)

where
k = 1,2,''-,K. (20)

From Fig. 1, we note that both dipoles in a given crossed dipole = COS O,(-r, sin r O + COS O)" (28)
pair have the same space factors ph or qk. Moreover, in any dipole
pair, the y-axis dipole output is related to the x-axis dipole output From Vk and i/t, we can determine a e [- /4 , u/4] and 15 e
by a factor r,, as seen in (6) and (7). Because of this, the subvectors [0, z) [6]. [2].
of Sh consisting of the even and the odd numbered elements of a

t
k This approach may be used to estimate the signal directions and

differ by the factor r,. Let A,, and A,2 be the L2 x K submatrices polarizations as long as the matrices A, Apl, A0 1 , and A,, are all
of A consisting of the even and the odd numbered rows of A, of full column rank, a condition that is satisfied in most cases. We
respectively. Then A,2 - A,,*,. where f, is the diagonal matrix shall restrict our consideration to the cases where this approach is
with diagonal elements q, k - 1, 2,',-. K. Let E,j and E, 2 be applicable. For these cases, when the array covariance matrix is
the L2 x K submatrices formed from E, in the same way that A,, known exactly, the signal directions and polarizations can be found
and A, 2 are formed from A. Then the diagonal elements r,, exactly.
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In practical situations, however, only a finite number of noisy 10

measurements are made at the dipole outputs. The estimates of the
signal directions and polarizations must then be made from the
available measurements. Also. the number of incident signals is
unknown and must be estimated from the measurements. We shall
use the minimum description length (MDL) criterion described by , 0
Wax and Kailath [9] to estimate the number of incident signals. The
total least squares (TLS) algorithm [11. (101 is then used to estimate

'. *t q, and *',. The estimation steps in the signal subspace £

approach are as follows. 30P

I) Compute the maximum likelihood estimate of the array
covariance matrix R

Z~.Z~")(9 0 20 40 60 80 100 120 140 160 180S= z(t.)z"(e.) (29)

(a)
where N denotes the number of measurements.

2) Compute the eigenvalues X2t > a ... ; X,-- of it. 2

3) Estimate the number of incident signals k using the MDL
criterion.

4) Obtain Eis whose columns are the eigenvectors of k that ,
correspond to the k largest eigenvalues of R.

5) Form E,,. Ep2, IEqi, Eq2, E,1. and E,, from tE in the
same way that Epl. Ep 2 . Eqi. Eq2, Eiri and E,2 are = 6formed from E,. 4IIo

6) Calculate the TLS solution *'p [I. [10] from Ep, and E0 ,.
7) Calculate the TLS solution ýV, from iq and tq2. Z
8) Calculate the TLS solution 1', from E,, and E,,. 5
9) Compute ek,' qk,. qk, r,. and P,,. kl, k,, k 3 , k,. k 5 = >

1,.2'-'. K. by determining the eigenvalues of *p, q',a _

+Pq +*l t p',. and 1', = =*,-t1 . respectively. 0 20 40 60 so 100 120 140 160 1so
10) Determine the grouping scheme (,bk qk. 4 bk), k = (degres)

I. 2." ", k. as discussed in (22)-(23). (b)

11) Calculate the direction and polarization estimates
(6k, ,k , k k). k = 1.2-'. K, from ( ,,k rk) as Fig. 3. Variance of estimates versus R for a linearly polarized signal

discussed in (24)-(28). (a = 0%. = 0, SNR = 20 dB. N = 31). (a) Variance of direction esti-
mates. (b) Variance of polarization estimates.

IV. SIMULATION RESULTS

We show below several examples of the use of this technique for (L = 2) pairs of crossed dipoles. Consider first a linearly polarized
direction and polarization estimation. These results were obtained signal (a = 0°) that arrives from azimuth angle 0 = 0" and eleva- I
by using 50 Monte Carlo simulations. All incident signals are tion angle 0. (For the case of one incident signal, we drop the
assumed to have the same unit amplitude E4. The signal-to-noise subscript k.)
ratio (SNR) used in the simulations is - 10 log sov 2 = 20 dB. The For such a signal, Fig. 3(a) shows the variance (in decibels with
number of data samples taken at each dipole output was N = 31. respect to degree squared) of the direction estimates as a function of I

Before presenting these simulation examples, however, we first 0 for several elevation angles 0. (The curves shown are the aver-
describe the method we shall use to describe the accuracy of the ages of the results for the 50 Monte Carlo simulations.) Note first
estimates. For polarization estimates, we define the estimation error that 0 has little effect on the direction estimates when 0 is small. 1
to be the spherical distance between the two points M and AM on The reason is that for small 0, the outputs of the x- and y-axis
the Poincari sphere that represent the actual signal polarization dipoles are not close to zero at the same time. For large 0, however,
(a, 0) and the estimated polarization (i, 4) 161, [21. Similarly, we 6 has more effect. When 0 is large, the total power received by the
define the error I'd of a direction estimate (9, ý) to be the angular x- and y-axis dipoles becomes small as 0 approaches 90". This I
separation between (9, ý) and the actual arrival angle (0, 0) as causes the performance of the direction estimates to deteriorate.

measured at the coordinate origin in Fig. 1. The direction and Also, note from Fig. 3(a) that the accuracy of the direction estimates
polarization estimate variances plotted below are the mean-squared becomes worse as 9 increases. This result occurs because the
values of these errors. estimates 9 become worse due to the arcsin (.) in (24) As sin- 1(w) 1

There is one other feature that must be handled. For the special approaches 90', the slope of sin- 1 (w) approaches infinity. When 0
case where 0 = 0, the angle 0 has the same effect on the signal as is near 90, a small perturbation in the argument of the arcsin in
the angle 0. When 0 9 0, changing either 0 or 0 simply rotates the (24) causes a large error in 0.
principal axis of the polarization ellipse. (The principal axis is Fig. 3(b) shows the variance (in decibels with respect to degree
defined relative to e..) To eliminate this ambiguity between 0 and squared) of the polarization estimates as a function of 0 for several
0. we always define 6 = 0 when 0 = 0. values of 0. In general, if we start with 0 near zero and then

We now present a few examples. We begin with the case of a increase 0, the accuracy of the polarization estimates at first im- I
single incident signal. The array used for this case consists of four proves with 0 but then finally becomes worse as 0 nears 90". The

U
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Fig. 4. Variance of estimates versus 4 for a circularly polarized signal Fig. 5. Variance of estinates for the first of the two signals from (6,• =5"
(a =45", SNR = 20 dB, N = 31). (a) Variance of direction estimates. (b) *s = 0') and (O2 1 0", *)z 0") with SNR =20 dB and N = 31. Vari-
Variance of polarization estimates. ance versus (a) Aa when (ar1 --45", • 0") and (a 2 = 4S"- Act

8 = 0").(b)d,8 •hn (c, 3 1 = 0 ")and (a = 30".0 2 =0"+
I ~improvement with 9 continues up to a higher value of 6 when 8 is .

near 90" than for other values of 0. This behavior is a result of thecomplicatd dependence of the polarization estimates on 9, •, and almost identical. A, Apt Aqi, and A,3 then become il]-condi-

F, as seen from (28). uioned. This ill-conditioning makes the signal subspace approach
Fig. 4 shows another example, for a single circularly polarized more sensitive to noise. For example, an ill-conditioned A results in

signal (a =45"). Fig. 4 shows the variance of the direction and an ill-conditioned R0 in (16). Since the noise contribution to R is
polarization estimates as a function of 0 for several 9. Note that the different from e21 when the number of data samples is finite, the
accuracy of both the direction and polarization estimates depends signal subspace cigenvectors of R are perturbed by the noise from
little on * but is better for small 9. the true eigenvectors of Ro. The ill-conditioning of R0 then makes

Now we present examples that illustrate how the separation in the signal subspace eigenvectors of Ro more sensitive to this
direction and polarization between two incident signals affect the perturbation 1111,performance of the estimator. The array used in the examples On the other hand, Fig. S shows that the polarization estimates
consists of 25 (L = 5) pairs of crossed dipoles. improve very tittle with larger polarization separation. The reason is

Consider first the case where the two incident signals have closely that the HIl-conditioning of A,, is not reduced by increasing theSqmspaed arrval angles with 9, = 3" and O, 10l' and *3 = 2 = polarization separation.
0". Fig. 5(a) shows the variances of the direction and polarization Next consider a case of two circularly polarized incident signals
e stimates of the first signal as functions of Au when au, 45' and with a1  a 2 =45". Fig. 6(a) shows the variances of the a:-octon

a,-45" - &a and 8, - P2  O 0. Fig. 5(b) shows the variances and polarization estmates of the first signal as functions of &0S~of the direction and polarization estimates of the first signal as when the signals arrive from elevation angles 9• S 5 and 02 = 5"
functions of A$ when a, =ar = 30" and P, =0O and P2'eO" + A9 and azimuth angles O, =*•2=O0. Fig. 6(bo) shows the
+- •0. variances of the direction and polarization estimates of the first

Pig. S illustrtes that the direction estimates are improved signif- signal as functions of A*, when the signals arrive from elevation
I ~ ~icantly by increasing the polarization separation.mTe reason is that anglesGt=9 2 = 30"and azimuth angles 0 , =0°and *2 = "

when the two signals arrive from closely spaced directions with A*•.similar polarizations, the columns of matrix A in (13) become Fig. 6 show,, that both the polarization estimates and the direction
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0G V. CONCLUSION

5 We have described the use of the ESPRIT algorithm for estimat-
ing two-dimensional arrival angles and polarizations of arbitrarily

0 •polarized signals with a square array of crossed dipoles. The
-5 .ESPRIT algorithm exploits the invariance properties of such an

array so that both angle and polarization estimates may be com-
o puted. Some typical examples showing the use of this approach have

- 15 
been presented.
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Uniform GTD solution for the diffraction by metallic
tapes on panelled compact-range reflectors

G.A. Somers
P.H. Pathak

lt~exing terms: Panelled reflectors, Compact range, Diffraction, Scattering

In this paper an asymptotically rigorous uniform dif-
Abstract: Metallic tape is commonly used to fraction coefficient for the tape geometry will be devel-
cover the interpanel gaps which occur in panelled oped for the 2D case by superimposing the fields
compact-range reflectors. It is therefore of interest scattered by the two edges of the tape (steps). The fields
to study the effect of the scattering by the tape on diffracted from each step are found by combining the
the field in the target zone of the range. An ana- fields scattered from two simpler canonical geometries
lytical solution is presented for the target zone via the generalised scattering matrix technique (GSMT)
fields scattered by 2D metallic tapes. It is formu- (7, pp. 207-210]. This method produces an analytical
lated by the generalised scattering matrix tech- solution which is computationally efficient, and, further-
nique in conjunction with the Wiener-Hopf more, the computation time is independent of the electri-
procedure. An extension to treat 3D tapes can be cal size of the structure, making this an ideal solution
accomplished using the 2D solution via the equiv- technique for the electrically large reflector and/or the
alent current concept. The analytical solution is high-frequency regime. Typically, reflectors that are
compared with a reference moment method solu- manufactured in panelled sections have an array of strips
tion to confirm the accuracy of the former. of tape on the surface. It will be shown numerically that

the coupling oetween the different tapes is negligible,
thereby allowing for a superposition of the tape-scattered

1 Introduction fields which can be calculated under the assumption that
In present-day compact-range systems the main reflector each tape is isolated. This implies that the multiple dif-
may be physically very large for operation over a wide fraction between the different strips of tape need not be
bandwidth, necessitating the reflector to be manufactured considered.
in sections. Once these panelled sections are aligned, one An analytical development of the composite tape-
can use mtalli.Once tapse tocovertheintrpanelle n gap, ae diffraction coefficient will be presented. As mentionedcan use m etallic tape to cover the interpanel gaps, as pr v o s y th ta e d f aci n o fi i nt s f rm d b
shown in Figs. I and 2. It is therefore of interest to study previously, the tape-diffraction coefficient is formed by
the effect of the scattering by the tape on the fields in the superimposing the fields scattered from both steps which
target zone of the range. Previously, Gupta and Burnside form the boundaries of the tape. The individual step dif-[1] aveexaine ths poble intwodimnsins 2D) fraction is constructed from the solutions of two canon-
by] have examined this problem in two dimensions (2D) ical problems; one is the interior modal scattering by alby the method of moments (MoM); however, this is a planar short circuit within a simple 2D parallel platelow-frequency technique and therefore there are practical waveguide problem for which the solution is well known,
limitations due to computational effort on the electrical the other is a Wiener-Hopf solution of the plane wave
size of the reflector. As the frequencies of interest rise, or
the reflectors become electrically large, the MoM scattering by a semi-infinite ground plane over an infinite
becomes inefficient. In three dimensions the MoM solu- ground plane. These solutions will then be combined by
tion proves to be intractable due to the large electrical the GSMT to form the diffraction coefficient for each of
area of typical compact-range reflectors. This scattering the two steps which form the tape. The two step-
problem is well suited for analysis by a high-frequency scattering solutions will be superimposed as shown in
technique such as the geometrical theory of diffraction Fig. 3 to form the composite tape-scattering diffraction
(GTD) or one of its uniform versions. Within the frame- coefficient.
work of the GTD, scattered fields from a three- An e-' time convention is assumed and suppressed
dimensional (3D) geometry can easily be derived from a throughout this paper.
2D diffraction coefficient, providing that the radius of
curvature of the reflector is large compared to a wave- 2 Tape diffraction coefficient
length. This can be accomplished using the equivalent
current method E2-4] or the incremental diffraction coef- The fields in the target zone of a compact range consist of
ficients [5, 6]. Gupta and Burnside [1] empirically con- the desired reflected geometrical optics (GO) field and the
structed a 2D diffraction coefficient for the fields undesired fields which arise from the edges of the reflec-
scattered by a metallic tape by examining the trends of tor as well as from any discontinuity in the reflecting
the data from various moment method cases. surface, such as an interpanel gap or from a metallc tape

covering an interpanel gap (see Fig. 1) The upper and
Pipu 8796H (El(P)), IAm received 4th November 199 and in revised lower reflector edge-diffracted fi.lds in the target zone
form 17th Fxbuary 1I92 can be reduced by treating the reflector edges with
The authors are with the ElectroSdenme Laboratory, The Ohio State resistive materials, by serrating the edges, or by using a
University, 1320 Klemm Rood, Columbus, OH 43212, USA blended rolled edge. These edge-diffracted fields will not

1SE PROCEEDINGS-N. VoL I3, No. 3 JUNE 1992 291



be addressed here. We will concentrate on the diffracted where D""(06, 0 t; t; W) is the tape diffraction coefficient.
fields that arise from a surface discontinuity due to per- The {(} designations on the field coefficients are implied 5
fectly conducting metallic tape on the reflector surface. and will be omitted for simplicity. It will be shown later

that when the isolated scattering centre approximation
upper edge-diffracted ray breaks down it becomes necessary to include multiple 3

Ssuriace d'chsOnhnuity

dciffracted ray

Fig. 1 Ray rechanisms contributing to the total field an the target
zonz I

The matallic tape constitutes a perfect electrically con-
ducting (PEC) rectangular cylinder on a parabolic cylin-der. However, since the tape width is significantly smaller

than the size of the reflector, it will be modelled locally by s

a PEC rectangular cylinder on an infinite planar surface,
as shown in Fig. 2. I

Fig. 3 Tape-diffraciedfields in the far zone formed by superposition of
htthe step-diff~racted fields3

step-diffraction terms to account for the step-to-step
h 9 coupling.

2.1 Step diffraction3
The GSMT can be used to resolve the step (Fig. 4) into
two less formidable scattering problems provided that a

parabola
Fig. 2 Tape geometry Fig. 4 Step in ground plane 3

PEC lip of length 6 is temporarily introduced to the step,
The solution to the electromagnetic problem in Fig. 3 as shown in Fig. 5. As mentioned previously, this

can be obtained by adding the transverse electric (TE,) problem can be analysed by combining (via the GSMT) U
and the transverse magnetic (TM,) solutions, which are
uncoupled. TE, refers to the case for which the electric
field is polarised entirely in the plane of the paper, and
similarly TM, refers to the case for which the magnetic
field is polarised entirely in the plane of the paper. Indi-
vidually, the TE, and TM, formulations can be solved as
scalar problems. Fig. 6 Step in ground plane with PEC lip 3

The steps in the ground plane that form the tape are
assumed to be isolated scattering centres. This approx- the solutions to two canonical problems discussed below
imation allows the tape-diffracted fields, Uw", to be cal- and shown in Figs. 6 and 7. A related problem of the dif- U
culated in two parts, namely by the superposition of the fraction by a thick halfplane in free space was treated by fl
two step-diffracted fields, Ul, I and UZ,' 2 . Thus, Mittra and Lee [8] and later by Volakis and Ricoy [9].

U e U:;1 + U",w, 2  (1) 2.1.1 Canonical problem of scattering by a semi- I
as shown in Fig. 3, where U represents the scalar y- infinite ground plane over an infinite ground plane: U
directed magnetic field for the TE, polarisation and the The canonical problem of Fig. 6 can be solved by the
scalar y-directed electric field for the TM, polarisation. In Weiner-Hopf technique. Let the exterior and interior
the far field of the tape, regions of Fig. 6 be denoted by regions I and 2, respec- I

tively. Define the incident, .I jrc, and scattered,
U=d- U'(Q) D 0(',6; t; W) -(2) 4,: waveguide modes by eqns. 3 and 4, respec-

S ( ( ;tively. Note that this structure cannot support an n --
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0 TM, mode, but it can support all TE, modes, including The Wiener-Hopf technique is used to calculate the
the n = 0 mode. So, for the TM case, n can take on reflection, the transmission and the edge-diffraction coef-
integer values from 1 to oo, anc, for the TE, case, n ficients, R.i, R."t(0) and D,4,,(O, 9), respectively, of the
ranges from 0 to oo. The modal fields are normalised so canonical geometry shown in Fig. 6. The particular for-
that all propagating modes contain the same power. The mulation of the Wiener-Hopf equation is via Jones's

I method [7, pp. 97-99]. The Fourier transform of 46 is
e x eg~n Idefined as follows

gi€Xon 1 t~x, s)= = I 46(x, z) e" dz (7)

S12 W) where the caret indicates a spectral quantity. Two differ-
- ent types of illumination will need to be considered in

4 ,this analysis. Specifically, case (a) will deal with an inte-
21 region 2 rior waveguide modal excitation of the geometry in Fig.*zN 6, and case (b) will deal with an external plane wave exci-

tation.
Fig. 6 PEC semi-infinite ground plane over a PEC infinite ground

Splane Case (a). Interior waveguide modal excitation: The fol-
lowing field representations are the exact wave number

x4. spectral domain fields when the nth waveguide mode
PEC :(eqn. 3) is incident on the open end

reflected 2. b
incident field

_ f ie ld O N - - 4 1-
Z X L - L ,l LTM (s)

Fig. 7 Short terminated semi-infinite waveguide below ground plane - --b x > b

bar above the waveguide modal field symbols signifies sinh (yx) (8)

the normalisation. There is no physical interpretation of I sinh (y- x < b
this normalisation for the evanescent modes. i - (__01+_

m. 1RM V(27rc. fi)

ITMITE I' 1- 1 s L!I I
e~s (3)) xx -IT(.)LE

I b -e- (z-b) x > b
T.n). 1 nhX cosh (yx) (9)

*!V ( E'e -sinz s . (4) sin h (yb ) x < b
|T/T}•q /(P .) .e o nnx| 4 where

b = %/(s2 - k2) IM(y) < 0 (10)

where and the Weiner-Hopf factors are given by [7, pp. 91-94]

{2 ifn=0 (5) L iV(s) - i/(b)A kb

and X ixp s I -c+ln (2a +i!]

- bjx 2 n l >0 In n)kb) 2 )]
IT-,) 0 Yn (6) x exp In

The reflection of an nth waveguide modal field from the

open end of the waveguide when an mth waveguide mode OD Lsb
is incident upon the open end is characterised by the x 1 + T xp inmodal reflection coeffcient R,.,. Ile transmission coeffi- s)1
cient which describes the coupling of an incident plane = L_(-s)
wave field from region 1 into the nth waveguide mode in and
region 2 is represented by T1 2(0), and the transmission
coefficient that relates the radiation of the nth modal field Lt5 (s) = i (5 + k) Lr"(s) = L':'(-s) (12)
into region I via the open end is given by T.2(0). Here 0 where
and 0' are measured in a positive sense, i.e. clockwise,
from the upward normal to the ground plane. Only one c = 0.057721 ... (Euler's constant) (13)
of these transmission coefficients needs to be calculated These spectral solutions of the radiated (transmitted) and
by the Wiener-Hopf technique since they are related by reflected fields, eqns. 8 and 9, must be converted to the
reciprocity. The coefficient that describes the scattering of spatial domain by the inverse I'ourier transform. This
the incident plane wave field back into region I from the results in a contour integral representation of the con-
edge discontinuity is given by Dr(O, 0'). figuration space field.
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The complex s-plane topologies of the radiated and TE 1),.,.1 1 1
reflected fields are shown in Figs. 8 and 9, respectively. JIM (- P . Ii•.b(P.)
With the exception of the transverse electromagnetic + f

(TEM) waveguide mode pole, the topologies of the two x LT+(P,.) Lr+'(P.) (15)
polarisations are similar. The radiated wave number spectra of the fields in region 3

1 contain a branch cut, as does the field in any infinite
Im] s plane region, which prevents an exact evaluation of the inverse

transform (see Fig. 8). However, the far field can be well 3
approximated by evaluating the integral using the
method of steepest descent. Note that, in the spectra of
the radiated field, eqns. 8 and 9, the apparent pole at

,.......--branch cut s = P. due to the 1/(s - P.) term is removed by the zeros £
of the L1 :" (s) or L!_E(s) functions.

integration path Before the steepest descent approximation is applied, it
kt Re is convenient to make the following transformation to the

_-k •S ,angular spectrum

branch cut .\ s = k sin co (16)

GO pole (diffracted fields along with the following substitutions
only) s~k sin 0' 3x - b = p cos 0 

(17)

and
z= p sin0 (18) 1

Fig. 8 s-plane representation of the fields radiated into region I due to Under the transformation given in eqn. 16, the s-plane is
an incident waveguide mode and the fields diffracted back into region )
due to an incident plane wave ariving at an angle 01 transformed to the co-plane. This o-plane is shown in m

Fig. 10. The co-plane representation is convenient to
perform the steepest descent approximation since all the

reflected field branch cuts have been removed. The steepest descent
Im Ms] s plane path (SDP), the saddle point, and the contour C onto 3

which the original s-plane integration path was mapped
are indicated in Fig. 10. After performing the steepest

. Cut descent analysis and inspecting the solution, the trans-
mission coefficients can be extracted. Note that the solu- I
tion is very efficient since it contains only elementary 3

integration path rfunctions and is in closed form.
I . . . Te "(8) = , nn (-" ,l(k) cosO L9

~~' Lw)~~T(2-)j 1Y k sin 0 + p.LMP. )

\TEme podle // x LT+(k sinO )---exp i (19) I
(TE only) / ~i p- 4 )

propagating evanescent
Spoles e Mode- TXj( NLE..

Fi11.9 s-plame repres tion offields reflected back into region 2 due xL (k n) exp i (20)
to an Muddent waveguide moded

Case (b). External plane wave excitation: To find 5
The contour integration for the scattered fields for De,(O, 6'), we need to determine the edge scattering by

x < b due to a waveguide mode excitation is shown in M]
Fig. 9. For z> 0, which corresponds to fields reflected I
back into the waveguide interior, the contour is closed in I I pln
the lower halfplane at infinity (dashed contour) to facili- G pole I I
tate the use of the residue theorem. It can be shown that , \,I I d" ,
this dashed contour does not contribute to the integral, f el1
thereby allowing the reflected fields in the waveguide to ,
be equated to the residue contributions which are preci-
sely the waveguide modal fields. By inspection of the I- _.li,-t ,l _e_

reflected fields in the spatial domain, the reflection coeffi- 2 1 12 1 I

cient can be extracted and is given in eqns. 14 and 15. point I

+X+ 1 I I I
Al P. + p&
1 7 7MFig. 10 o-p/n re•reation ofthefirlds radiated into region I due

X L + ($.. LtMP. (14) to an incident wavegulsde mode and tme fields diffracted back into region)Idue to incident plane we arriving at an angle 9'
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an incident plane wave field as shown below The ratio of ( 1  ,9rr'M' O/(z =)/ITm1TE)0'Iz - 0), the
T1 ) =e- -b)owV z sin 01 (21) reflection coefficient, is given by (TMITE)r ,= : 6.,,, where

(" -a-), ' (21, is the Kronecker delta function
with an assumed form of the reflected geometrical optics
(GO) field given by ,=fl if m (27)

ITMIT) ru,(6") F T e-k(- Ix- b) co@ '+ zsin 0') (22) ifmAn

The scattered field is the difference between the total field 2.1.3 Generalised scattering matrix formulation: The
and the incident field plus the assumed reflected field. The scattering matrices required in the GSMT procedure can
wave number spectrum of the edge-scattered field for be defined in terms of the reflection, transmission and dif-
x > b is given by fraction coefficients pertaining to the two canonical prob-

rTM,•,Vx > b, s; 0') lems as follows [7, pp. 207--10]
S(jMITEi = DTM,, (6, 0•,D0 0) (28)

- 2k cos, Li M T sin 0') [SW•Zur] = [R"11rT1] (29)

V(2n) s - k sin 0' LSVMITj(s = T T -6.,,, (30)
x Lr(s) e-Ax-b) (23) [S(MI/rTE] = [T2i(rN/r)(O)] (31)

and and by reciprocity it can be shown that
* T .,,4 =x > b, s; 0') 1[SMTUIrE)] ± V+ (8 ik) [s Vr f1T E)]T (32)

1j! I 1 LTI(k sin 0') 12b 1(2

= - i s- ksin 6'y ( When implementing the solution on the computer, it is

x LT_(s) e y -b) (24) not possible to include the effects of an infinite number of
evanescent modes since that would require the matrices

The scattered field spectrum must be converted to the to be of infinite order. For solutions of engineering accu-
spatial domain by the inverse Fourier transform The racy, it is typically sufficient to use scattering matrices of
complex s-plane topology for both polarisations of the order N x N, where N is the number of propagating
scattered (diffracted) field is also shown in Fig. 8. The modes plus 5.
residue of the pole at s = k sin 6' shown in eqns. 23 and The total scattering coefficient, S'', accounting for
24 is the GO contribution which corrects the assumed all of the multiple interactions, is given below. The
reflected field given in eqn. 22. If the GO pole (at w = 0') {TM/TE) superscripts are omitted for notational simpli-
in the diffracted field w-plane (Fig. 10) is to the left of the city; however, they are implied
saddle point, then it is necessary to include the residue sv',s"f(6) = S1 1 + [S2 1](P](Sr][PJ"
contribution of the pole because it would be enclosed by
the SDP and C. The diffracted fields in region I can be ([/'] - [S22,[P][Sr][P])- 1[512] (33)
evaluated asymptotically by the method of steepest In eqn. 33, [P], the transmission line scattering matrix, is
descent in a similar manner to the radiated fields in case independent of polarisation
(a). For convenience, the spectra will also be transformed
into the angular domain by eqn. 16, along with the sub- [P]. = e0'-6., (34)
stitutions given in eqns. 17 and 18. The corresponding ,, is the propagation constant of the nth mode of the
diffracted field &.-plane is shown in Fig. 10. parallel plate waveguide, 8 is the length of the PEC lip.

By inspection of the steepest descent solution, the The step-diffraction coefficient is recovered by taking
edge-diffraction coefficients can be expressed as the limit as 6 --+ 0 of the scattered field solution in region

I2k\ cos 6 cos 6' 1 (eqil. 33)
_D _ O , 0-) I s 0 + s 0 ' L t+ (k s in 0) IT M IT E JD y ." ( 0 , 0'; t)'4nsin60+ sin 6'

x sn - S,1 + [S2,][Sr]([I] - [SMA][Sr]M)-[Sa] (35)
Sx L"'(k sin 6') exp ( -i (25) The first term in this expression is due to the scattering

' ' from the edge of the semi-infinite ground plane over an
2\1 infinite ground plane, and the second term is due to the

sin 0 + sin 0' L energy that is coupled into the waveguide of vanishing
/ \length and is then reradiated back into region 1. The

x L'.'(k sin 0') exp (-i (26) total step-diffracted field, um, can be calculated if the inci-
\ 4) dent field, u', at the discontinuity is known. Thus,

As mentioned earlier, T.121TNIT(0) is related to teP
T.214711r/)(0) by reciprocity, as will be shown later in eqn. = u• ITMITe)DI.e(, 6'; t) - (36)
32.
2 where p is the distance from the edge to the observation5 2.12 Canonical problem of reflection by a planar short point. If the polarisation of interest is TM,, then ug and
within a semi-infinite parallel plate waveguide: The u' represent the y-directed electric field. Similarly, for
second canonical problem is shown in Fig. 7. The solu- TE,, V and ul represent the y-directed magnetic field.
tion for this case can be found in many elementary elec-
tromagnetic textbooks, and therefore it will be simply 22 First-order diffraction coefficients for a tape on
stated here without proof. The excitation is assumed to the compact-range reflecto.
be a waveguide mode travelling to the right, "ITI#•, To facilitate the locally planar approximation of the tape
which is incident on a planar short at z - 0 (see Fig. 7). and the ground plane we assume a plane wave field inci-
The only reflected modal field is given by (TMITE)/t•4. dent on the tape. Since the width of the tape is very small
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compared to the distance from the tape to any point in 7.62 m (25 ft) and a target zone 12.19 m (40 ft) from the I
the target zone, we can also assume that the rays diffract- vertex of the parabola. All data are normalised by the -
ed from the two steps that form the tape arriving at any GO fields of a perfect infinite parabola. The solid curves
point in the target zone are parallel. Therefore, the corn- result from an application of the theory presented in this
posite tape-diffraction coefficient can be calculated as paper. The reference solution shown by the dotted lines !
follows was formed by subtracting a method of moments (MoM)

DP'(0", 6'; t; W) solution of the scattered fields for a finite smooth (no
tape) parabola from the MoM computed scattered fields I

Fx W( &) D-RP(6', t for the same parabola with a metallic tape on the surface.
= exp 1 -k-2-(sin 6' + sin 6( ; t) This subtraction process attempts to 'cancel' all but the

tape-scattered fields, and does so very well. However, at

+ exp [ik (sin 0' + sin low levels in the TE, polarisation case there is some 3
L 2 d noticeable interaction between the tape and the end of

the parabola that does not cancel completely in the sub-
x D"'¶n - 6&, x - 6'; t) (37) traction. This interaction manifests itself in an oscillation

where 6' and 6' are the scattered and incident field direc- about the true tape-scattered fields. 3
tions, respectively, measured from the normal as shown Fig. I I shows the TM, tape-scattered fields in the
in Fig. 3. Since the target zone is in the far zone of the target zone for three different tape widths and three dif-
tape-scattered fields, we can ignore the GO tape-scattered ferent tape thicknesses. In all cases, the agreement is very
field (the spectral width of the GO tape-scattered field good and seems to improve as the tape becomes wider.
shrinks to zero in the far field). This is consistent with the fact that the steps interact with

each other less and less as the tape widens. Note the
2.3 Obtaining the 3D tape-scattered fields in the trend of an increase of 6 dB/(doubling of tape width). U

target zone by the equivalent current method Fig. 12 examines a tape width of 10.16 cm (4 in) with a 5
The tape-scattered fields in the target zone of the reflector thickness of 0.254 cm (0.1 in) at three different fre-
can be obtained via the equivalent current method quencies. The agreement is again excellent, and it appears m
(ECM) [2-4] or the incremental length diffraction coeffi- to improve as the irequency increases. This corresponds
cients (5, 6] by using the 2D tape-diffraction coefficient to the tape becoming electrically wider and hence multi-
developed in Section 2.2. The idea behind the ECM is to pie diffraction (which is not included) becoming less sig-
determine the locally tangent equivalent free space elec- nificant. u
tric (I) and magnetic (M) currents along the midline When multiple tapes are placed on the same reflector, *
(centre) of the upper face of the 3D tape. The currents are they will interact with each other (on the tape level as
determined by assuming that the tape is two dimensional opposed to the step-to-step level). Fig. 13 attempts to put
and that the direction of incidence and diffraction make these multiple tape interactions into perspective. The 3
an angle, P'o and 0o, respectively with the vector tangent MoM solution was performed with both tapes present 5
to the length of the tape. It is noted that ,0o and po are and therefore contains all higher-order tape interactions.
functions of position along the length of the tape (3, 4]. The present solution is a superposition of the first-order
Thus, tape-diffracted fields. Since the first-order analysis for this 3

size tape (w = 10.16 cm (4 in), t-=0.254cm (0.1 in) at
-p') f= 1GHz) was shown in the previous figures to be quite

Sl(Q), -e J I(8n'"o accurate, Fig. 13 is a measure of the tape-to-tape inter-
M(Q1) ,%[sin (fl'o) sin (o)] 0\k- (Zo)I action. The tape-scattered fields are plotted for variousM(1j(Q,)[sin gL P) vertical separations of 0.305 m (1 ft), 0.914 m (3 ft), and

) r) ' /[sn 1 s o (38) 1.83 m (6 ft). For all three cases the two solutions track
SH'¶(QE) TEDa. JV[sin (Pa) sin (Do)) remarkably well implying that, for TM, polarisation, *

where Q, is an illuminated point on the tape, i is the tape-to-tape interactions are not significant. i
local unit tangent to the length of the tape, and Yo and The first-order results for the TE, polarisation is not
Zo are the free space admittance and impedance, respec- as promising as the first-order results for the TM, polari-
tively. sation (see Fig. 14). In this example we are presenting 3

These equivalent currents are then inserted into a radi- comparisons for three different widths: 1.35),, 0.677), and !
ation integral which integrates along the entire directly 0.339A. It is obvious that, compared to the TM, case, the
illuminated finite length of the tape step-to-step interactions are high, resulting in poor agree-

LkZo ment with the reference solution. This is because the step-
EM(P) ["4 IA X A x !i+ voA x M]-]-dr scattered grazing fields for the TM, polarisation must

4ir.e. R vanish, yielding small step-to-step coupling, whereas the
(39) TE, polarisation fields do not vanish on the boundary so

P is the observation point in the target zone, R is the the step-to-step coupling is more significant. The TE, I
vector from QE to P, and here A is the unit vector in the polarisation would benefit greatly by including the multi-

R direction. Since the radiation integral is finite in the ply step-diffracted fields which will be considered in the

spatial domain, diffraction from the endpoints of the tape future.

are inherent in this formulation under the assumption
that the endpoints of the tape do not perturb the equiva- 4 Conclusion
lent currents. We have presented an analytic solution to first order to I
3 Nunmriual rasults predict the scattering of a metallic tape on a compact-

range reflector when it is observed in the target zone.
The cases presented in this section simulate the tape- Since it remains accurate at the tape reflection shadow U
scattered fields from a 2D compact range with a focus boundary, it is a uniform solution. 5
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Integral Equations for the Scattering by
a Three Dimensional Inhomogeneous Chiral Body

P&G. Rojas
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Depanment of Electrical Engineering
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Columbus, OH 43212
USA

Abstract- Integral equations are obtained for the electromagnetic (EM) scattering by an
inlhmogeneous, isotropic, three dimensional chiral body. The chiral body is assumed to
be In free space, and it can be attlahed to a perfect electric conducting (PEC) body.
The integral equations are obtained with the help of vector-dyadic identities and the
free space dyadic Green's function. These equations are expressed in terms of a volume
integral with the electric field as the unknown and surface integrals where the tangential
components of the electric field and its curl are the unknowns. The integral equations
are then transformed into a linear system of simultaneous equations by means of the
moment method technique. Expressions for the scattered field in the far-zone are also
obtained by replacing the dyadic Green's function and its curl with their large argument
approximations. Furthermore, closed form expressions are obtained for the fields and
dipole moments induced inside an electrically small, homogeneous chiral sphere where it
is assumed that the fields are constant. Finally, closed form expressions and numerical
results for the fields scattered by the small chiral sphere and its bistatic echo area ae also
obtained.

L INTRODUCTION

The interaction of electromagnetic fields at microwave frequencies with the opti-
cally active chiral media has attracted the attention of the electromagnetic com-
munity due to its potential applications in the field of antennas, microwave devices,
waveguide propagation, scattering, etc [1-51. For example, in scattering applica-
tions it may be possible to use chiral material to coat a scatterer and thus control
Its scatterin properties more efficiently than a regular dielectric coating due to
the extra degree of freedom offered by the presence of the chiral parameter. The
Purpose of this paper is to develop a set of integral equations for the scattering of
EM fields by a three dimensional inhomoeeous chiral body in free space which
can be attached to another pefect electric conducting (PEC) body as shown in
Fig. 1. Note that a well known procedure known as the volume equivalent cur-
rent method 18j, where the inhomogencous material scatterer (in this case a chiral
body) is replaced by a set of unknown equivalent currents, can be used to solveIfor the Aelds scattered by the chiral body due to an incident field. The integral
equations for the unknown equivalent electric 7.9 and magnetic VJ. currents
are easily obtained with this method; however, these equations are coupled.. For
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example, for a chiral body in free space without the presence of any other scatter.
ers, the volume equivalent current method yields a set of equations where there
are six scalar equations with six unknowns. Furthermore, all the integrals are
volume integrals for a three dimensional body, and surface integrals for a two..
dimensional body. This method has been used by Kluskens and Newman [7] to
solve a two dimensional problem. Note that for the simpler case of a homogeneous
chiral body, a formulation which only involves surface currents, can be used as
was done by Morita [81 for a dielectric scatterer. The goal of this paper is then
to obtain a system of integral equations for three dimensional bodies in terms of I
a volume integral with as few unknowns as possible and a set of surface integrals
also with as few unknowns as possible [9]. The starting point of the present pa-
per are Maxwell's equations and the constitutive relations for chiral media. For
the reader who is interested in a detailed explanation of these equations and the
various theoretical aspects of EM field propagation inside chiral media, there are
many papers in the literature which deal with these subjects [10-23). It is noted
that this list of papers is by no means complete, but it is representative of the
work that is presently being conducted in this area. Different expressions (all of
them equivalent) exist for the constitutive relations; however, a particular set of
equations, popularized by Bohren [10-12], is used here. These constitutive rela- I
tions are very convenient for the derivation of the integral equations because they
satisfy simple duality relations. The paper is organized as follows. In Section
11, the integral equations for a three dimensional chiral body attached to a PEC
body are developed. These equations are obtained by transforming the vector
differential wave equation for the electric field into a set of integral equations
with the help of various vector-dyadic identities and the free space dyadic Green's
function. It is noted that these equations can also be obtained by starting withI
the equivalent polarization current formulation. The procedure followed here to
obtain the integral equations is similar to that used by Tai [24] for a dielectric
body. In Section III, the integral equations developed in Section 1U are trans- I
formed into a linear system of simultaneous equations by means of the moment
method procedure. In Section IV, an expression for the scattered field in the far-
zone is obtained by only keeping terms of O(RO) where R0 is the distance from
the origin to the observation point. In Section V, closed form expressions using I
the integral equations developed in Section !! are obtained for the fields and dipole
moments induced inside a small homogeneous chiral sphere. This calculation can
be accomplished because the sphere is assumed to be much smaller than the two
wavelengths inside the material (right and left circularly polarized) such that the
Induced fields are constant. Once the ,lectric and magnetic dipole moments are
computed, expressions for the far-zone scattered fields and the bistatic echo area I
(or radar cross-section) are developed. Simple numerical results are also computed
for the chiral sphere. Note that the purpose of considering the scattering problem
in Section V is to verify the validity of the integral equations developed in Section
IL. Finally, In Section VI some concluding remarks are given. Note that in the
analysis that follows, a exp (-iwt) time dependence for the fields is asumed and

I

I-



Scatering by Iaomongeneow Chiral Body 735

11. INTERAL EQUATIONS FOR THREE DIMENSIONAL BODIES

For time harmonic fields, Maxwell's equations inside the source-free chiral body
of Fig. I can be written as

VxZ=sJ ; Vx"i=-w• (1)
whereas the constitutive relations are given by [1]

V - r +iiff ; ' - i~r 17(2)

where e(F), ;j(C), and -y(F) are the perrmittivity, permeability, and chiral admit-
tance, respectively. Note that all three parameters are functions of position for
an inhomogeneous chiral medium and are in general complex. An alternative set
of equations to those given in (1) and (2) exist which are more convenient for the
present analysis. That is, (1) and (2) can be rewritten as

i'IC- + 2  (3a)
T

X =- e - k2+ - (3b)

17 T

where k- w= lv' and [19]

-=wef ; 1 -T=1-k 2 02  (3c)

It should be emphasized that the parameter k abuve is not the wave number of
the chiral medium. The fields V and D can then be expressed as

'D-,(T+,VXT); 3-;&cW+,6XW)(4)
Note that (3a), (3b), and (4) satisfy the following duality transformations:

- and -7--- (5)
That is, (3b) can be obtained from (3a) and the expression for " i. (4) can also
be obtained from the expression for D by applying (5).

A vector differential equation can be obtained for the electric field X by ap-
propriately combining (3a) and (3b), namely

t (6a)

By the duality transformation of (5), the following equation for 'R can be obtained
from (6a)

Equations (6a) and (6b) reduce to the well known vector wave equations when the
chiral medium becomes homogeneouai. Before the integral equations are obtained,
It is necessary to specify the boundary conditions satisfied by the fields at the
boundaries Sb, Sc, and Sd depicted in Fig. 1. Taking into account that the
tangential components of the electric Z and magnetic 17 fields are continuous
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on Sb and that the tangential components of 7 vanish on a PEC surface, the
fields Xj and Tb satisfy the following boundary conditions (where 'f and Xb

are the electric fields inside and outside the chiral body, respectively)

Rx 7a -RxE ; n-xVxTb -!2lxVXTo-w 2 p xeflRx onSb (7a)

Rx2b = 0 on Sc and R x"E. = 0 on SO (7b) I
where n is the unit vector normal to the surfaces SP(p = b, c, d). Note that Sb
is the boundary between the chiral boay and free space, Sc is the surface of the
PEC body not in contact with the chiral body, and Sd is the surface of the PEC
body attached to the chiral body (see Fig. 1).

n (Eo , 0)I

5 bb

3 ,n@
CHIRAL BODY Vb ECG

","V b v.C

Figure I. Inhomogeneous chrial body attached to a PEC body.

The first step in the development of the integral equations is to obtain an
expression for the fields outside the chiral body. This can be accomplished by
means of the vector-dyadic Gree's second identity [24], namely

t'¢•) + 7c (n' x (V' x Tb))
IV,{ . ox,,0 .x 2,+ Wx (VIX,)• 4w

- ( -' x V ' x '(b) O } di,

T •O') r' e V• (8a)

I

I'
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where ~}. ~

and'

The prime on the operator Vt denotes differentiation with respect to the prime
coordinates, while the prime on ds' denotes integration in the prime coordinates.
The free space dyadic Green's function '0 is

o .+ V') -") ; O(R)(9a)go -" -(I V(4,)

where R - ' - V'I, ko - wvfe-o-p' (co and juO are the permittivity and perme-
ability of ftee space, respectively) and

Vx o(c,,") - IV x (XClR) (9b)

Note that Lo and V x V0 have the following symmetry propertiesVo ,(r, ) -Vo C,,) ; (V',VoC,,,',))T-V-UO•oC,, (90
where T denotes the transpose operation. The incident field T in (8a) is
given by

rne(-) go (r, ) -. Viwo7(F ' - x M(Y))dv' (10)

It is important to mention that the direct application of the vector-dyadic Green's
second identity yields a highly singular integrand (0 (R- 3)) on the surface in-
tegrals over S6 and Se. Since the fields will be evaluated on these surfaces, it
is necessary to obtain less singular expressions. The less singular expressions
(0 (R-2 )) in (8) were obtained by means of the identity [8]

fU (p') V'V':O(R)dW' - - f Vg • (I ('))'V'(R)da' (11)

where S is a closed surface and the vector a is tangential to the surface S.
The next step in the analysis is to multiply (6a) (right hand side) by U0 (rW )

and integrate over Va. By means of the divergence theorem, the following expres-
sion can be obtained

L

+ (-.• . (eLv, x x.)} " x (V' x b)) V', ,

o 4,rv,
rev. (12a)
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where 7j (i (?)) is the same as 7© (- (r)), except that the integral in (8b) is
over Sd instead of Se. The operator 7 V in (12a) is given by

S• (10) ) - . S, ) ,/ (12b) I
where Z (',T) is a dyadic differential operator, namely

471',v PC x -we(l r) xU rr

•W 2V (e,(1),6 '(r)) x go (r',Y) + ( r__). _ _ 2 ( r.,)_ I
(12c)

The first vector integral equation can be obtained by multiplying (12a) by poand adding to (8a), namely

7C (R x M( X'xZb)) - A07d (f~ c (+()'~) 91 (iX~b

/JO7V (ra (1")) - (TO) - t"'C(7 FE Vb(1)I
f P o(.,)- r', E VC

where
"7b( ( 1")) "b {[( 7! 0xo (y,,) +o. 2,,6 "

S CI 4w J '

____TO I

j- . (13)

Note that when the medium V. becomes m = O, ( " = 1, pc A), (',?) I
and 7b (d (r)) become

,x- ( V) xV -o (r,.,) + (1 ,,,,) (14a)

7b((~) Vj (~) xUO (r, r) a(F,)E (14b)I

where the parameters e, I%, and k still depend on position, but that dependence
is not shown explicitly in (14a) and (14b) to simplify the notation. Furthermore,
k becomes the wavenumber of the achiral body Va when 0 - 0.

To solve for the felds a and 7b, it follows from (13) that it is necessary
to solve for the felds "I& in V., W' x b on Sb, RI x (V'xXb) on Se, and

fr x (.LVx T.) on Sj, respectively. In oter words, there are atotal of 9

scalar unknown functions. Equation (13a) where r e V. yields three scala
equations. Therefore, six additional scalar equations remali to be found. Two

I
I
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scalar equations are found by taking the cross product of R and (13a) and taking
the limit of 1 e Vb as r -- SC, namely

fiX"I(f) R 4xP ReVix (V x 7b)) + po Rx7d (hi' (X '~)

nix 7b (Rl'x b) +po R x v (Ra ()) (15a)

where P in front of the operator 7© denotes the principal value. Similar equations
can be obtained by following the same procedure as above. Thus, for t e Vb whenr'--* Sb

2( PC
- Po, ( x 1v (' (71)) (1(' b)

and for rEVo when " -Sd

flx'() m X~c x (V' X Tb)) + A x Rdu fX (-Lv'' Xr.f))

n lX7b (fe x b) +Po R x 7 v (7a" (15c)
As was mentioned before, the integral equations obtained in this section can also
be developed by starting with the equivalent polarization current formulation.
That procedure shows that the equivalent polarization current method yields
expressions where the electric and magnetic fields do indeed satisy the correct
boundary conditions. This fact is not always clear because no boundary conditions
are explicitly imposed in deriving the equivalent polarization currents.

IMl. MOMENT METHOD SOLUTION

In general, the integral equations developed in the previous section cannot be
solved in closed form, except for special cases as shown in Section V. Thus, it be-
comes necessary to use some type of numerical technique to solve these equations.
There are several numerical techniques to solve z-tegral equations like the ones
developed in the previous section. In this section, a brief outline of a moment
method solution will be given [6,25]. The first step is to expand the unknown
functions in terms of a set of basis functions. That is, To (7') can be expressed
as

3 N

1: 1 -K 3--R T a F fW 1);Y'C a( a

where ut - n + (t- I)N and e(1t - 1, 2,3) is an orthonormal set of coordinates
in Va and {Jd} is a set of basis functions defined in Va. Likewise, the other
unknown functions can also be exne in, tums of basis functions defined in
the domains of Sb, Sc, and S, rsx;wtvely. That
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2 Mb
R1 b7)an,"E Sb and n"v+ (I -1)Mb

f-1 n-1

2 MC (16b)
2 M-1

dm1 i.n m
an'E sC and n'u m + (t- 1)Mc (16c)

and
2 Md

A f

VE Sd and m" - m + (- 1)Md (16d)

where {'•(}t-, (p = b, cd) is an orthonormal set defined on S,(p = b,c,d).
Note that the basis functions defined in (16b)-(16d) have to be differentiable.
Substituting (16) into (13a), one gets

I

-PO a 7 -j ( '

PO• {~a.5 [7v (Tt fd (ye)) + AnL1JJMF]} -~n(F;F V-
1=1 nl U)F

(17)

Siiar equations can be obtained by substituting (16) into (15). The next step in
the moment method procedure is to define some testing function in the domakins
Of Me, S=, Se, and Sd. Let1I

1a()-E 1 E ouO)1-iEv

where n + (I-1)N and
2 M,

61! nmi

where n" M n + (I- I)M. Next, let's introduce an inner product defined as

(ff(F) ; - ;Q')do p - b, j d (19) m

I
I
m



Scofterng by 1hahauscenadou China Body 741

The original integral equations of Section II can then be transformed into a linear
system of simultaneous equations by substituting (16) into (15) and incorporating
(19) into these resulting expressions and into (17), namely

M -[z1]V] (20)
where

V]- [1,. • -- 031N .. ,02 1,] (21a)
and

(VIO, aNe) ,• VI) - -- , _ V2 I_ VM, Vl V_2, (21b)

are (3N + 2(Mb +Mc + Md)) x colun vectorsand [Z is asquare matrix.

The VA' elements are defined as follows

where Ye n + (I -1)N and

VP, ur," (l)),M ; 1:5n:5Mt1: : 2, top b, c, d (22b)

3where en' -+ (f - )Mp. The matrix [ZJ, which is some Imesrefeaieto asthe
impedance matrix, can be expressed as follows:

-- 3N- -2M6-. .- 2M. -- 2 MdI I
I I I

[:z : [zz,] [Z.6_ 3N

Izi- (23)

z1 [Z [Z:. [z:L 2M.,
I I I!

1=.1 ', ± 1z.- .] ,':-- [z±.] 2Ma
Ii

Note that the sub-matrices 2C,(P - a, b, c, d) ame square matrices, whereas
the rest of the sub-matrices in (23) mre rectangular. All the matrix ekenents In
(23) ae gi= in the Appendix. The solution of (20) y Ields the values of the
expanion coefficients introduced in (16).

I

I ,
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TV. FAP.-ZONE SCATTERED FIELD

Once the integral equations developed in Section U are solved either by the mo-
ment method or any other technique, it is of interest to calculate the scattered
field in the far-zone. To accomplish this task it is necessary to first obtain expres-

sions of 0oq~') for the Green's functions to (1', r) and'V x Vo (ir, r) , where
Ro Is depicted in Fig. 2. As it is well known, in the far zone, the vectors 7 and
r-i" are assumed to be parallel and R- 1 is assumed tobeequal to R~l inthe
denominator of O(R). Thus, keeping these assumptions in mind, one gets

V o (C,,) - 'o (, r) - (o +. ( - ), (24a) n

where @ and 6 are the usual unit vectors in the unprimed spherical coordinate
system transverse to the radial unit vector F. Substituting (24a) and (24b) into
(13a) for 7 e Vb yields the following far-zone expression I

(r) - b(.F) _ Mi(r) _ p•(e, •) P(,Ro)> IV6 (25)
4irko (25>a>)r

If the moment method procedure developed in the previous section is followed to
solve the integral equations, it yields the following expression for 7'(0, 0)

3 N 2I.

7 -8, pokoZ ' ~(~ 3If (r) 0  b~ (V,))I
1=-I i 1= 1 =

+ EM '?W c (t', " )) - PM 4 al d (td (r,)) (25b)

where W, ea", W', and m" are defined in (16). The integral operators if are
given byI

+ Po,2(O + ) )-_ -S"6 4 (") &' (26a)

7fov Q -- ;p-cd (26b)3

( V, (ILL) x -jw2c#4}) (-+;)dv'

+, W2 ,, ..e , , _ ,,,

I
!



x +(po~o PcE.} (+~) tj' (26c)

II

IR 0

Figure 2. Definition of P0 and 7- 70 in far field approximation.

V. FIELDS INDUCED IN AND SCATTERED BY AN ELECTRICALLY SMALL
CHIRAL SPHERE

First, let's consider the fields induced in a homogeneous chiral sphere of radius
a, where a is much smaller than the two wavelengths inside the material, such
that the fields within the sphere are constant. Without loss of generality and to
simpliy the analysis, the center of the sphere is assumed to be located at the
origin of the coordinate system. Thus, evaluating the fields at r - U, (13a) can
be written as follows:

7b (f' X re) - MOTv (,,) r- .•-,, - = ; F.6 (27)

Since E. and "g. are constant inside the chiral sphere, the evaluation of 7b and
Iv yields the following closed forms expressions

7b H1\pr 2-n 9 (28M)

TV jt2)(28b)

where no _ (o/-o) 1/2. Because the expriiosM for 7& and 7. contain two un-
bnowns, namely, the magnetic T. and electric To. fields, (27) is not sufficient
to determine both unknowns and therefre a second equation is needed. An-
other equation Js obtained by tking the curl of (27) and evaluating the resulting
eqxes.on at IF - 5, namely,

I 7,, ,x , - ,,o( i,, +XV -Mr <VxX" ; r- (29)

Once apin, Vx7b and V x7v can be evaluated in dosed form because of the



I

assumption that the fields are constant within the chiral sphere. Thus, at 7 ,

17. Poo we fe (30a)
3(TO= _ • a + V r - 1 1

Vx 7v - w2c2eyo (30b)
The fields Ts and P. can now be obtaied by solving the two simultaneous
equations in (27) and (29). Thus, substituting (30) into (29) and (28) into (27),
respectively, and solving (27) and (29), yields

1 3 (2 + E) X~nc(,f ~3 ("'Ewop) inioWRwf C -?.)(1 (31a)I

P. 3 {(2+5Vw..U)+ i3(vL ) E}C (31b)

wh. ereV x 7 - ikoo1 "• , e re/co, oa - o1h/o, &nd

c-(2+A ) (2 +5) -,rffO (31c)

As expected, each of the expresi•ons for and 7. oain cross-polarized
components due to the presence of the chiral parameter 0. WIh the-sphere
becomes achiral - 0), (31) reduces to a well known result, namely

3 3 (32)22er 2 Ir
where W -/ /APO.

The results given in (31) are the same as those obtained by Lindell and Sihvola
[261 who followed a totally different approach to obtain the fields inside the chiral I
sphere. The induced magnetic (Po) and electric (P.) dipole moments can also
be computed. However, it is necessary to first compute the equivalent magnetic
(M•q) and electric (.Toq) polarization currents [6]. These currents, which are
assumed to be radiating in fee space, are given by

1o -L(.-1)..+ "w s ;r v 7 E i(3a

,E(m 0 ;r(Vo
koif's-A -growls] ; 'V. e3

where V.e the volume occupied by the sphere,
Since and No we sat, a. and Pm,,, can be easily computed, namely, I

7 '7 .q 4ira3/3 ; i- Vi q 41r, 3/3 (34)

Substituting (31) and (33) Into (34), one get

I
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+ Zio) [(2 +;ha))(I - es.) - 2(kOO)2ewrp.]} (5a

, irak 0 {-3ep&kO~X"'(O)

+inoRl(O) [(2 + -cr)(1 - pr) - 2(kO)2er;a.] } (35b)

Note that in a chiral scatterer, the electric and magnetic dipole moments depend
on both the incident electric and magnetic fields. For an achiral body (D - 0),
the expressions for "Pg,. are much simpler, namely

S. - 4,roko -±x-O ) ( ) -.

0h() ('~r ; Prw~kiio ( ) (36)
w re 'P. i proportional to X"W and i n proportional to

Once the dipole moments axe obtained, there is a straightforward procedure to
calcuate th far-zone scattered fields if It is assumed that 7em are infinitesmal
dipole moments located at the origin - 27]. The flar-zone pattern vector
7(0,0), introduced in (25a), in given by
T(9, q) ,, GFg(9, )+4F,(9, ) - ii•rO (•+ •)' .T+i*• (e' - •)'.,,n (37)

where 7,0 =47,n are given in (35a) and (35b), respectively. For -0, the
expression for T(0, #) becomes .

4,r~k p 3 21 +er(00+ Tm ( 2+.)

. 17io) ( -WNI(38)

Another parameter of interest is the echo a•r (or radar cross section) (9, (,
which is defined as follows

0(8,- l. 4  . .I (39a)

Substituting (25U) and (37) into (39a) yields

! (e, #) ki jn1P@+ #.P '+k na P@2 (39b)
W62 4(a)2 r.(o) 12

Keeping In mind that Pa,,m are oprtioa to kho, it Is clear that theexwes-
don in (396) satisfies the Rayleigh Law of scatterin. Tbt is, for a smal chdiral
sphere, a(#, )/(,ra2) is pportonal to (koa)4. As was the case beoe, (396)
becomes much simpl when P -0

0!(, ) M 4(kAD) 4  l 2&{ ji..n(0
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748 + Vr.'(o) (1.fr) -;• , e-.7I"(o)(~) }
2+er + pr(39c)

For purposes of illustration, assume that the incident field is a plane wave field I
given by

- ;1I"~(v - (40)

where EO is a constant. For this incident field and for a sphere of radius 0.005 Ao,
where AO0 is the free space wavelength, FO, F#, and the bistatic echo area I
a(0, 0)ffra2 are calculated in the E. and H-planes. That is, in Fig. 3 the
E-plane patterns are shown, where = 0 and 0 < 0 < w, and in Fig. 4 the 1I-
plane patterns are depicted where r=,r/2 and 0 < G < r. For the parameters
given in Figs. 3 and 4, the wavelengths inside the chiral material are 0.5036 A0
and 0.2036Ao. Note that for the achiral case (0 - 0), the component F# is
zero in the H-plane, whereas, the F# component is zero in the E-plane. In
many applications, it is important to know the backscattered echo area. Thus,
for e =-7,

v(8 = , 36(koa)" IS, - C,12  (41) 3
,r" 1(2 + t,)(2 + ;te) - 4ercp(kOI,)2J2

An interesting result is that the backscattered echo area of a small chiral (or
achiral) sphere is zero if c,.= Pa.

S€=o"

II

2 Ua
Figure 3. E -planie patterns.
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H-PLANE

a= .005 ItI

Figure 4. H-plane patterns.

VL CONCLUSIONS

A set of integral equations for the electric field has been developed for the scat-
tering by an inhomogeneous three dimensional chiral body in the presence of a
perfect conductor. Note that a similar set of equations can also be developed for
the magnetic field instead of the electric field. The integral equations are obtained
by starting with the vector differential wave equations satisfied by the electric
field inside and outside the chiral body. These equations are then transformed
into integral equations by means of the vector-dyadic Green's second identity, the
boundary conditions satisfied by the fields and various other vector-dyadic identi-
ties. The integral equations are expressed in terms of a volume integral where the
unknown is the electric field inside the chiral body, and surface integrals where
the unknowns are the tangential components of the electric field along the chiral-
&ee space boundary and the tangential component of the curl of the electric field
along the surface of the perfect conductor. These integral equations are numeri-
cally more effcient than the equations obtained in [7], especially when the body
is electrically large-

In general, the integral equations developed here cannot be solved inlosed
form. Thus, one is forced to ue some type of numerical procedure. The well
known moment method technique is used here to transform the integral equa-
tions into a system of linear simultaneous equations. Expressions are obtained
here for the so-called impedance matrix in terms of an arbitrary set of basis and
testing functions. Since one of the applications of the present work is the study of
the scattering properties of chiral bodies, far-tone expressions are obtained for the
electric field scattered by a chiral body. Finally, to verify the validity of the in-

.......
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tegral equations developed here, they are used to obtain closed form expressions
for the fields and dipole moments induced inside an electrically small homoge-
neous chiral sphere. The dipole moments are then used to calculate the far-zone
scattered fields and the radar cross section of the small sphere. As expected, the
results obtained for the electrically small chiral sphere show the presence of cros
polarized components of the electric and magnetic fields induced in a chiral body.
It is also shown that the echo area satisfies the Rayleigh Law of scattering.

APPENDIX

The elements of the impedance matrix introduced in (23) are given in this ap- 3
pendix. First, the elements of the square sub-matrices are given.

P/C'M) " +T(t ') ••)V.9 (•

where

m-q+(t-1)N , n--r+(i -)N ; 1: _q, r<_N , 1 _i, 1:_3 3

.-n- x P c ,MePn 0M)). ' S,, 2c) (

Zn",n O(f X P7d( n V') -Jd(-))S (42d)

In (42b)-(42d), m = q+ (I- 1)M,, n - rb+ ( - 1)M! where 1_ q, r S
and 1 _5 i, f :5 2. The subscript p in Mp is equal to b in (42b), c in (42c)
and d in (42d), respectively. All the matrices above are square. The rest of the
matrices given below are rectangular.

Zn*Pn--,,Io( (?Ifp V)),, ny).V ,,b,c-.• (43a)

ZZ P~n 7(Zf*(')p-b,c~d (43c)3

where

m-q+(I-1)Mp; 1:5q5_Mp, 1_51:S2
n-r+O-l)N; lrSN, 1_5i_53

Furthermore,

2t - - x Ic (•) r,,rn ((44.) lI

2!j -po(R x T tidn(70,( ) PI~i wnbM))S (44b)3

~ ; p-c~d (44c) Z

I

I I
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where
n -= r + (i - 1)Mb ;1: 5 r 5 Mb 1: I<i:52 (44d)

dn-q-+I(I-1)Mp ; 1:5q<_Mp ; 1< 5<2 (44e)

Finally,

where m is given in (44e) with p = d and n is given in (44d) with Mb replaced
byMe.
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I. INTRODUCTION

The ability of an adaptive array to null interference
depends strongly on the interference bandwidth
[1]. In general, nutting performance drops quickly
as interference bandwidth increases. A well-known
technique for improving the bandwidth performance
of adaptive arrays is to use tapped delay-lines behind
the elements.

The use of tapped delay-lines in adaptive arrays
was first suggested by Widrow, et al. (2], and has
been examined in several subsequent papers. In an
early study, Rodgers and Compton [3] evaluated the
bandwidth performance of a two-element tapped
delay-line array with real weights. Mayhan, Simmons,
and Cummings [4] used an analysis based on the
eigenvalues of the covariance matrix to discuss how
the number of elements and the number of delay-line
taps affect the bandwidth performance of an adaptive
array. White [5] addressed the tradeoff between using
tapped delay lines versus additional auxiliary elements
in adaptive sidelobe cancellers. Finally, Compton [6]
has described how the number of taps and the delay
between taps affect the bandwidth performance for a
simple two-element array when complex weights are
used.

The purpose here is to extend the results in [6]
to the case of a linear array with up to ten elements
and an arbitrary (possibly unequal) number of taps
behind each element. For such arrays we show below
how the number of delay-line taps and the amount of
delay between taps affect the nulling bandwidth. For
each array size, we determine the optimal number
of delay-line taps and the optimal intertap delay as
functions of the required nulling bandwidth. The

Bandwidth Performance of cnear Adaptive Arrays results in this paper are taken from Vook [17], and more
with Tapped Delay-Line Processing detailed information may be found there.

In a previous paper [8] by one of the authors, it
was shown that the nuUing bandwidth of an adaptive
array with fast Fourier transform (FFT) processing is
identical to that of an array with the equivalent tapped

The nalling bandwidth of adaptive arrays with tapped delay-line processing. The equivalent tapped delay-line
delay-line processaig b examnied. Linear arrays with up to 10 processor has the same number of taps in the delay
elements are ceriered. It b shown how the nmzdler of taps In lines as the number of samples used in the FFTs and
to delay Hnus uad the amount of delay between tope affect the has the same delay between taps as the sampling time
nuling bandwtL. For each slatmofarra, the optimal ntumber of in the FFTs. Because of this equivalence, the results
delay-lima tup and the optinal Intertap delays are determined as here can also be used to find the optimal sampling
fuern c tin of do red nm" lin8 bondwidL time and optimal number of samples for arrays with

EFT processing.
In Section II, we present the equations needed

Manuscript received November 7, 1990; revised September 19, 1991. to calculate signal-to-interference-plus-noise ratio

IEEE Log No. 9107204. (SINR) for an M-element linear adaptive array
with an arbitrary configuration of tapped delay lines

PThis work was supported n part by the Joinlt Services Electronim behind the elements. In Section III we present results
Proratm under Contract N00014-89-3-1007. based on these equations and discuss the bandwidth

performance of linear arrays with up to ten elements
001S-9251/92/3.000 1992 IEEE as a function of the number of taps and the tap
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*7/ to 2wpd/ld over a bandwidth A•, centered at
the carrier frequency w0 . We denote the fractional
bandwidth of the desired signal by B4 = Aa/wo.

(M- - __- The N interfering signals are assumed to be I
mutually independent, zero-mean, stationary, random
processes independent of d(t) with average power

,M, W3, wpi, = E[Iii(t)12]. Like the desired signal, the Ith
interfering signal is assumed to have a flat, bandlimited

M,,(,) -- (') power spectral density S1, (w) equal to 2 vpi, lAwi,

"WA,3 [' . - over a bandwidth Awj, centered at frequency w0. The
fractional bandwidth of the Ith interfering signal is
denoted by Bi, = Aw, /wo.

Finally, each element signal is assumed to contain
a zero mean thermal noise signal m,,i(t) %'at is
independent of the desired and interfering signals.

-),x,(i) iK,(I) The noise signals on different elements are assumed

W2K, wtK, to be independent and to have average power a'. The
noise power spectral density Sh(w) is assumed equal to I
2iao2/AW. over a bandwidth Aw.,, centered at wo. The
fractional bandwidth of the noise signal is then given
by B,, = Aw ,/wo.

Let .•,,k(t) be the received signal at tap k behind
element m. Each tap signal 2,k(t) is multiplied by a
complex weight w,.k and then summed to form the

1(t) array output. The weight vector W = [w11, w12,..., w1 = I
Fig. 1. M-element adaptive array with tapped delay-line WIK,,.. .,WMKHJ T giving maximum output SINR for

processing. a given set of tap signals can be calculated using the
method described in [6]. The optimal weight vector is

spacing behind each element. Section IV contains our given by [1] =()

conclusions. W = *-Is (1)
where i is the covariance matrix 3

II. DEFINITIONS * = E[X*)T] (2)

Fig. 1 shows an M element adaptive array with and S is the steering vector,
tapped delay-line processing. The antenna elements S (3)
are assumed isotropic and separated by a distance of S E[Xd0(t)].
one-half wavelength at the carrier frequency wo. Behind In these equations, X = !El1(t). ... 2MKX (t)]T is the
element m is a tapped delay line with K,, - 1 delays, signal vector and do(t) is a replica of the desired signal I
Km taps, and a time delay of To seconds between taps. waveform. The covariance matrix # and the steering
Different elements may have different numbers of taps vector S are computed as described in [6] except with
in their delay lines. The tap configuration of the array more array elements and possibly an unequal number
is denoted by the vector K, whose components are the of taps per element. Once W has been computed for a
number of taps behind elements 1 through M. That is given signal scenario, the output SINR is given by
K = (Kl,K 2 ,...,KM).

We assume that the array receives a desired signal SINR - 5 (4)
and an arbitrary number of interfering signals and that P. + Poo + po') + + 16)
each antenna element contains an independent thermal Pd, P., and P(i,) are, respectively, the output desired,
noise signal due to a preamplifier or mixer behind noise, and interfering powers [6]. 3
the element. The desired signal arrives from angle Several normalized parameters are used in the next
Gd relative to broadside (6 is defined in Fig. 1). 7he section. As described in [6], the time delay between
interfering signals arrive from angles 8j, ... 0, where taps, To, may be expressed in normalized form
N is the number of interfering signals incident on the
array. To " rTgo = 1;- (5)

It ic assumed that the desired signal a(t) is a
zero-mean, stationary, random process of average where Tgo is the time delay required to produce a 900

power pd - E[If(:)I], and that a(t) has a flat, phase shift at wo (i.e., T90 is a quarter-wave delay at
bandlimited power spectral density S2 (w) equal wo), and r is the number of quarter wave delays in To.
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The signal-to-noise ratios (SNRs) are denoted by, 10

a d - desired SNR per element (6) /' --

and

INR per element for interfering signal 1, .s5

I-1,...,N. (7) -0 T

III. BANDWIDTH PERFORMANCE OF ADAPTIVE 25 &.0
ARRAYS .3- - 6-0o0o1

0..001
We now consider how tapped delay-line processing -35 -,i 8.005

affects the bandwidth performance of the adaptive -40 1 ' B-0 I s
array. For convenience, we assume all signals received - - - -, -

by the array have the same fractional bandwidth . o 7o-o. 40 .2o 0 10 20 30 40 5060 70 o0
B = Bd = Bi, - B.. We also assume the desired signal *., rwees

arrives from broadside (Od = 00) with an SNR per Fig. 2. SINR venus 9j,, 10-element array, 1 tap per element
element of 0 dB.

In the figures below, we plot the output SINR of 10
each array as a function of the arrival angle of one - - -,

interfering signal with the arrival angles of the other s ' . - - -
interfering signals held fixed. In general, the choice
of interference angles often has a large effect on the 0 9:f -

performance. 7b evaluate the bandwidth performance, -5 - - - - -. -

we compare the array output SINR with the SINR -10
obtained with zero bandwidth (CW) signals. For easy -0 - - - -- -

comparison, the SINR for CW signals is included in .s/
every figure.", "

An M element array has M - I degrees of -20-- , . [ . !.
freedom, so the number of pattern nulls that can be .S.
arbitrarily steered is at most M -1 [1]. In this study, - 8-0

for an M element array, we assume there are always 30 8.0 05
M - 1 interfering signals so that the array is in its most 8.01
stressed condition. In general, the stronger the power &-- - - - .05 Is

8.02of an interfering signal, the more sensitive the array
is to the interference bandwidth [1]. In the results _'

presented below, we assume all interfering signals have 40 -60•-704•0-50 40-30-20 -10 0 10 20 30 40 50 60 70 60 90

the same INR per element, 40 dB. 8, (Degrees)

Fig. 3 SINR versus 9j,, 10-element array, 2 uaps per element.

A. Number of Taps Next, Fig. 3 shows the SINR when a single quarter
We begin by showing a few examples. Fig. 2 shows wave delay and an extra weight are added behind

the SINR for a ten-element array with no tapped every element, with all other parameters unchanged
delay-line processing. In this figure, there are eight from Fig. .2. With two taps per element, the SINR
fixed interfering signals located every 200 from -700 is equivalent to the CW SINR for bandwidths up to
to +700. The SINR is plotted as a function of 9,,, the 0.01. Fig. 4 shows the SINR if another quarter wave
ninth interfering signal angle, for increasing values of delay and another weight is added to every element-
B. The larger the bandwidth, the worse the SINR. Note that with three taps per element, the SJNR is
For B = 0.1, the degradation is as large as 25 dB for within 1 dB of that obtained with CW interference for
some values of 9i,. The array performance under these bandwidths up to 0.1.
conditions is dearly unacceptable. Note the sharp In the preceding examples, the SINR was plotted
spikes in the SINR curves, which result when two for increasing values of B while the number of taps
interfering signals arrive from the same angle so that per element was fixed. Now we show an example
only one pattern null is required to null both signals, where the bandwidth is fixed and the number of taps
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II I
-10 z

II " --255- 15

-30 B00.01" - K.-0 per We)

6. 0.1$ K-(2 per *ir
S • •~~.0.2 -,35 :: -3 e im )

- - .0-.3 K.(4 per elem

-90 40-70.40-60-40 .,0 -20-10 0 10 20 30 40 0 60 70 0 90 -0 4Q0 .70 40-50 40 -304-20 10 010 20 3040 50 60 70 O0 90

0., (Dwv-) 0., (Depges)

Fig. 4. SINR versus fi,, 10-element array, 3 tape per element. Fig. 6. SINR versus 9,i, S-element array, r - 1. 1
10 of the number of taps per element. (For 8,, between

100 and 80', the maximum attainable SINR with
--- /any number of taps per element is between 2 and

0 . \ / 4dB below the CW curve.) This example illustrates
""- -/a case in which it is not possible to recover the CW

performance by using tapped delay-lines. However, in

"- i both Figs. 5 and 6, the maximum attainable SINR for.•o •-" •- B = 0.2 is achieved with three taps per clement.

For a three-clement array (with two interfering
.240 signals), it is always possible to recover the CWS0 -- performance by using a sufficient number of taps per

.5 element, regardless of the interference angles. For
-30 8.arrays with more than three elements, however, one

O W -. (er ,m) can find examples where the maximum attainable
S.- . •.c(2pWIom.) SINR with tapped delay-lines is less than the SINR for

.--------- K.(3 pe, 610m.) CW signals.1 In these cases, as more taps are added,
0 t, ,'-4" ... the SINR reaches a plateau as much as 5 dB below

.90 40 -70 40 -50 40 -30 -20. 10 0 10 20 30 40 50 60 7o 0 ,0 the CW SINR. These cases typically occur for large
S., (Degren) fractional bandwidths (B > 0.1) and when one or two

interfering signals arrive from +900 or -900. We have
Fig. 5. SINK vensus 9,, S-clement array, r - 1. found no cases in which the attainable SINR was more

than 5 dB below the CW SINR.
per element is varied. Fig. 5 shows the SINR of a It may appear that this effect is caused by too many
five-clement array that receives signals of bandwidth interfering signals incident on the array. With M - 1
0.2. The fixed interfering signals arrive from -100, interfering signals, the array does not have enough
+30%, and +600 and the SINR is plotted for 1, 2, 3, degrees of freedom to place a pattern maximum on
and 4 taps per clement. Note that the array needs the desired signal. To test this possibility, we show
at least three taps per element to recover the CW in Fig. 7 the SINR for the same array as in Fig. 6
performance for all values of 8j, in the figure. when we remove the fixed interfering signal at 100,

Now consider what happens when the fixed so a total of M- 2 interfering signals remain. In I
interfering signals for Fig. 5 are changed to -900, this case, we find that as we add taps, the maximum
100, and 900. This case is plotted in Fig. 6. We again performance still does not reach the CW performance
find that the maximum SINR is obtained with three _

taps per element, but there is a difference from the 17Ier I am as a ,w I cIe SIN o wi-h m-wero
last case. In Fig. 6, for some 9,, the SINR for B - 0.2 andwidth intereace i actually AWW than with Cw interenmne.
is never as high as with CW interference, regardless w do not explore this behavior Iem
904 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 28, NO. 3 JULY 1992 I
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[0 - (NufOer or elemer, I
4 -- - Watatd Son-

"ach graph)
---s r • : , ; ! - " .,7..9.10

-i . . . . 3.4.5.6.7 .

.20 1 .

0 .05 .10 .15 20

.30 K-(1 prerem. lndwdh8
K-(2puerem.) Fig. , Required number of laps per element venus bandwidzh B.
K-(3 per *tem.)

.35 . - K-(4 pe*Iem)

- -..... .. ... I B. U nequal N um ber of Taps per Elem ent

-90 -80 -70 4 -50 .4030 .20 .1o 0 10 20 30 40 So 60 70 So 90 The preceding discussion dealt with arrays in
0, (D,)g- which each element in the array has the same number

of delay-line taps. It is also interesting to consider
ig. 7. SINR versus 06, S-clement array, r - 1. whether one could use a different number of taps

behind different array elements to reduce the total

for 8j, between 40* and 800. Te maximum attainable number of weights needed in the array. 7b examine

SINR is approximately 1.1 dB less than the CW SINR this question, we start with a three-element array to

for 0,I in that range. Thus, reducing the number of ilustrate typical SINR curves and then summarize

interfering signals can still result in a situation where results for arrays with more than three elements.

the maximum SINR is less than the CW For a given tap configuration in a three-element

We define the optimal number of taps per element array, there is a maximum bandwidth at which the

for a given bandwidth to be the minimum number of array can achieve the CW performance. We define the
taps requiredo ban widthin Io dB o the aaim nuabler o bandwidth cutoff B, of an array to be the maximum
taps required to be within 1 dB of the attainable SINR. bandwidth such that the array SINR is within I dB
(In this definition, we also assume q = 1. Recall that of its CW value for any B < B,. (In this definition,
r is the delay between taps in quarter wavelengths we again assume that r = 1.) It is shown in [7] that
defined in (5). As is discussed below, the value r = 1 for a three-element array with two taps per element,
is always within the range where maximum SINR is the bandwidth cutoff B, is 0.1, but for three taps per
obtained.) element B, is 0.5. Since there is such a large difference

We have examined numerous SINR curves of the between these two values of B,, the question arises
type shown in Figs. 2-7. A summary of the results whether one could use fewer than three taps per
is shown in Fig. 8, which plots the optimal number element when the signal bandwidth is between 0.1 andof taps per element versus the signal bandwidth for 0.5. If B = 0.2, for example, must one add an extra tap

3 to 10 elements. 2 For example, a seven-element to every element of the array?
array receiving signals with B = 0.1 should, for best Table I gives the bandwidth cutoff for a
performance, have three taps per element. In general, three-element array with various tap configurations.
as the number of elements increases, the optimal For example, if the tap configuration is K = (2,3,2),
number of taps per element increases for a given then the array achieves the CW performance if the
bandwidth. bandwidth is less than 0.35 for all combinations of two

As seen in Figs. 5 and 6, interference angles have a interfering signals. These values of B, were determined
large effect on the performance. Some combinations by examining numerous SINR curves to see the fullof 9,~, !1- 1,...,M- 1, yield poorer bandwidth b xmnn ueosSNRcre osetefl
pfo tha oth-M-1,yiers. Thoer optalwthps pereeffects of different arrival angles. (Since our evaluation

of bandwidth performance takes into account all
plotted in Fig. 8 take into account the arrival angles combinations of interference angles, symmetrical tap
that cause the largest SINR degradation. configurations such as K = (2,2,3) and K = (3,2,2)

have the same bandwidth cutoff.)

Sarrays with FFT preasing, Fig. 8 sowas the optimal (Le., As interesting result shown in Ibble I is that the

minimum) number of samples required In the e l Proe ., S. bandwidth cutoff for K = (2,1,2) is the same as that
it is easiest•to oen ramples iaan IFT rproessor, were n is some for K - (2,1,1), but for K - (2,2,1) B, is about ten
integer, one would use the smallest n sud thtat rsaleast slarge times higher. For an array withK - (2 1,2) and
as the value dsown in Fig. 8. bandwidths in the range of 0.005 to 0.05, it turns out
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Ba d idh TA BK E 1 10 - -

BnwdhCutoffs for Three-Element Array

Bandwidth Cutoff I
3-Element Array (1,2,1) 0.005 (2,3,1) 0.07 -6

2 Interfering Signals (2,1,1) 0.005 (3,1,2) 0.0
-~ -40dB (2,1,2) O.OS0 (3, Z2) 0.2 -10 1

(,0 dB (2,2,1) 0.05 (2,3,2) 0.35-I (222) . (3.3.3) 0.....

0 - -, -2 6.02

-3 IIO I

,10- -- 4 0-.70 -60 -.040- 430o.20-10 0 10 20 30 40 50 60 70 80

is 0., (Degrea)

Fig. 10. SINR versus 9d,, 3-element array, K - (3,2,2), r - 1.
.20- - - - - - - - - -

-25---------------------- - 10

.30----------------- B-.2 5
S: : : I8 -0.3I -

0. ( , )

9., (Dep,,,) I .s -1----------------- - -I

Fig. 9. SINR versus 9,,, 3-clement array, K - (23,2), r - 1. 1
., 20 1-2S-

that certain combinations of interference arrival angles B4- 82
-30 -9-0.-25can cause large (> 10 dB) drops in SINR. However, 8-03

an array with K - (2,2,1) does not have these drops .35 , 8-o5
in SINR and is still capable of optimal performance o-04
in that range of bandwidth. Since rearranging the -40 . '.
taps from K = (2,1,2) to K = (2,2,1) allows the .0 40.70404W -40-W -2 -10 0 10 20 30 40 So 60 70 80 90

array to handle much higher bandwidths, this result 0., (Dq-.,)
suggests that an extra tap should be placed behind a IFg.11. SlNRverss el,,3-eement army, K=(2,3, r-1.
middle element instead of an outer element for best g
performance. I

Also note that there is no performance advantage arrives from 90°. With a tap configuration of either

in choosing tap configurations such as K = (3,1,2) or K = (2,2,3) or K = (3,2,2) the array achieves optimal
K - (2,3,1) over K = (2,2,2). Although these three performance for signal bandwidths up to 0.2. However,
configurations have the same total number of taps (Le., a tap configuration of K = (2,3,2) yields maximum
6), K - (2,2,2) yields a bandwidth cutoff that is clearly performance for bandwidths up to 0.35. An extra tap
higher than the other two. This result suggests that it is on the middle element again yields better results than
better to divide the taps equally among the elements an extra tap on the end. U
than to have one element with two more taps than For arrays with more than three elements, the
another element, results are similar. For example, one finds that a

In Figs. 9, 10, and 11, we plot the SINR of four-element array with K - (2,3,3,2) has a B, of 0.25,
three-element arrays with K = (2,3,2), K - (3,2,2), but when K - (3,2,2,3), the B, is W.15. (With more i
and K w (2,2,3), respectively, for different bandwidths. than three elements, we use maximum attainable SINR
The fixed interfering signal in these three figures rather than CW SINR to define B..) 3
906 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 28, NO. 3 JULY 1992
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000 1 7Thus, the results in Table I suggest that for best
S, ,..'sl SINR performance, the taps in the array should be

.. 10 so,,om•ms shared as equally as possible among the elements. Any
100 N NO.: leftover taps should be placed on the elements near

- -the physical center of the array.

10 ...-...- ______ C. Delay Between Taps

7Throughout this discussion, we have assumed a
, -, quarter wavelength delay (r = 1) between taps at the

0 .05 .10 .15 20 carrier frequency. Let us now consider how the SINR

is affected by the delay between taps. We limit the

Fig. 1 Inteap delay cutoff r, vurus bandwidth B. discussion here to the case where the array has the
optimal number of taps per element.

In [61, it was shown that the SINR performance
of a two-element array is rather insensitive to the

The following line of reasoning appears to explain value of r as long as r is kept below the value of
why it is preferable to add an extra tap to a middle 1/B. For two elements and two taps per element, any
element. An arbitrary signal received from an angle value of r less than 1/B yields optimal performance.
0 > 0 will reach element 1 first, element 2 after Values of r between 1/B and 4/B result in suboptimal
some time delay T, and finally element 3 after a performance with two taps per element, but optimal
delay 2T. The tapped delay-lines compensate for the performance can be recovered if more taps are added
decorrelation due to T by delaying the signals on one to both elements. Vlues of r greater than 4/B result
element so that they are more correlated with signals in suboptimal performance regardless of how many
on other elements. An extra tap on an outer element extra taps are added.
can do this only when the outer element receives the We find similar behavior for arrays with up to ten
signal first. When 9 > 0, a signal on element 3 is a elements. For larger arrays, our results indicate that
delayed version of the signal on elements 1 and 2. An the SINR with an optimal number of taps is maximum
extra tap on element 3 will not restore the correlation and independent of r as long as r is less than a certain
between the element 3 signals and the signals on the maximum value. Above this maximum value, array
other elements. Placing the extra tap on an outer performance drops. This behavior is similar to the
element improves the performance mainly when the two-element case except that the maximum value of
interfering signals reach that element before the others, r is not simply 1/B for all cases. We determine the
However, placing the extra tap on the middle element maximum value of r as follows.
improves the correlation of the middle element signal For a given number of array elements and a given
with the signal on at least one other element for any 0. bandwidth, we first determine the optimal number of
Recall that our evaluation of bandwidth performance taps per element, as described above, with r = 1. Then,
takes into account all arrival angles of the interference. using this number of taps, we increase r and calculate
For this reason, an array with the extra tap on an outer the change in output SINR. There is a broad range
element does not perform as well as one with the extra of r over which the SINR is essentially constant, but
tap on the middle element when all interfering angles if r is increased enough, the SINR finally begins to
are taken into account. drop. We define the interap delay cutoff r, to be the

Note from Figs. 10 and 11 that the performance of value of r at which the SINR has dropped 1 dB from
arrays with K = (3,2,2) or K = (2,2,3) drops primarily its optimal value at r - 1. Examples showing how r
when one or both of the interfering signals are being affects performance can be found in [7].
received first by the two-tap outer element (see Fig. 1). For arrays with more than two elements, r, still
(Recall that 8j - 90* in both Figs. 10 and 11.) In depends mainly on the bandwidth of the signals, but
Fig. 10, when 9,, > 0, both interfering signals are also to a lesser extent on the number of elements
received first by the three-tap outer element, and in the array. Fig. 12 plots the intertap delay cutoffs
there is very little drop in SINR for B < 0.4. However, versus the signal bandwidth for arrays with up to 10S in Fig. 11, when 89, > 00 both interfering signals are elements. The number of taps per element in each
received first by the two tap outer element, and there case is the optimal value shown in Fig. & These results
is a significant drop in SINR for B > 0.3. When 9il - were obtained by examining numerous SINR curves
.-900 in Fag. 10 and 11, one of the two interfering for many combinations of interference angles. The

signals is received first by the two-tap outer eleihent, interference angles often affect the value of re, and the
and the SINR drops accordingly. Fig. 9 shows that the values of F. plotted in Fig. 12 are those for the worst
SINR of an array with K - (2,3,2) does not have these choice of arrival angles. As a rule-of-thumb, it may be
drops in SINR for the same bandwidth range. ween from Fig. 12 that the maximum intertap delay r,
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is usually around 11B. With six to ten elements and REFERENCES

higher signal bandwidths, the value of r, sometimes is (11 Compton, R. T, Jr. (1988)
slightly less than I/B. Adaptive Antennas-Concepts and Performance.

With r > r,, array performance is usually similar Englewood Cliffs, NJ: Prentice-HaU, 1987.

to that described in [6]. For values of r up to 12] Widrow, B., Mantey, P E., Griffiths, L. J., and Goode, B. B.

approximately 4/B (r, < r < 4/B), the performance ( ) systems.3
of the array can be improved by adding more taps Poceedinp of die IEEE, 55, 12 (Dec. 1967), 2143.
behind the elements. When r is greater than 4/B, P] Rodger, W, E., and Compton, R. T., Jr. (1979)

full performance cannot be achieved no matter how Adaptive array bandwidth with tapped delay-line

many taps are added. Examples of this behavior may proceIing.
IEEE Transactiom on Aerospace and Electronic Systems,be found in [7]. AES-1S, 1 (Jan. 1979), 21.

For r < 1, the behavior of the array is similar [4] Mayhan, J. T., Simmons, A. 1., and Cummings, W C. (1981)

to that described in [6]. As r is reduced below 1, Wideband adaptive antenna nulling using tapped

the SINR retains its optimal value but the weight delay-lines. I
magnitudes become large. As long as r 34 0, the IEEE Transactions on Antennas and Propagation, AP-29, 6magntuds bcomelare. s lng a r 0,the(Nov. 1981), 923.
array can, with large weight magnitudes, achieve [51 White, W, D. (1983)

the necessary magnitude and phase response for Wideband interference cancellation in adaptive sidelobe I
interference rejection. However, small values of r cancellers.

result in an ill-conditioned covariance matrix, which IEEE Trawad ibns on Aerospace and Electronic Sytems,
AES.19, 6 (Nov. 1983), 915.

may cause difficulty with the weight control algorithm. [6] Compton, R. T, Jr. (1988)
The bandwidth performance of a two-element adaptive

IV. CONCLUSION array with tapped delay-line processing.
IEEE 1ansactions on Antennas and Propagation, 36, 1

This paper has discussed how the nulling bandwidth (Jan. 1988), 5.
of a linear adaptive array is affected by the tapped (7l Vook, F W (1989)

delay-line configuration behind the elements. Results The bandwidth performance of adaptive arrays with

were presented for arrays with up to ten elements, tapped delay-line processing.
M.Sc. thesis, The Ohio State University, Dept. of

To retain maximum SINR performance, an M Electrical Engineering, Columbus, OH, Mar. 1989.
element adaptive array receiving M - 1 interfering [8] Compton, R. T., Jr. (1988)
signals generally requires more and more taps per The relationship between tapped delay-line and FFT
element as the signal bandwidth increases. For best proceasing in adaptive arrays.
array performance with a fixed total number of taps, ZEEE .ansoain on Antennas and Pnroqgion, 36, 1 I

(Jan. 19m), 15.the elements in the array should share the taps as [9] Applebaum, S. P. (1976)

equally as possible. Any extra taps are best used on Adaptive arrays.
elements near the center of the array. The optimal .EEE 2-ansactions on Antennas and Propagaion, AP-24, 5 I
number of taps per element for selected bandwidths (Sept. 1976), SM.

can be found from Fig. &
Adaptive array performance is relatively insensitive

to the delay between taps. If the array has the optimal
number of taps per element for a given bandwidth,
then any value of intertap delay less than the r, shown
in Fig. 12 (the values of r, are in quarter wavelengths)
will yield an SINR within 1 dB of the maximum
attainable SINR. As a rule-of-thumb, the value of r, is
about 1/B, so smaller bandwidths allow larger intertap I
delays. If intertap delays larger than r, are used, the
array output SINR drops. For intertap delays between
1/B and 4/B, the performance can be restored by
adding more taps behind the elements. For intertap
delays larger than 4/B, the array performance is
suboptimal regardless of the number of taps for most
interference angles. I

I W. VOOK
L. T. COMITON, JR.
EledroSeiema Llabrawory
Dep4 of letr ucal Elloeerlng
The Ohio State Univerully
2015 Nell Ave
Colusbus, ON 43212 3
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Electromagnetic Field Excited by a Line Source
Placed at the Edge of an Impedance Wedge

Giuseppe Pelosi, Roberto Tiberio, and Roberto G. Rojas

Abstrac-A maleor. Ugli-requemc salado. In preaated for the
Adld of. aMae source located at the edge of an Impedinace wedge. Surface
wave contributions an explicitly lsahlded lft, the expression for ate
load bid, which bs cdaontianuoussu thir shadow bonadarles.

L hcsooucriom

in several practical applications, a convenient location for wire
and slot anteninas is found near and at the tip of an edge joining two
almost fat surfaces. In modem technology, such surfaces often
Consms of composite materials, which may be usefully modeled by

srface impedance boundary conditions.- In order to analyze these
configuranions. the canonical problem of an impedance wedge ex-
cited by a source located as its.edge is relevant.

Recently, a high-frequency solution baa been presented for the
diffraction by a wedge with surface impedanc faces, when the
source and the observation points are located at finite distances from
its edge [ll. There high-frequency expressions for the total field are
given in the forma of the uniform GTD (MT). in this communica-
tion. the above formulation is extended to describe the scattering
phenomenon when a line source is placed right at the edge of the
impedance: wedge. Also in this case the solution to this canonical
problem is obtained in a rigorous and very simple fashion, by
employing A plane wave spectrum fonindaton. The same problem
was treated earlier [2], [3]. However, both the approach and the
formulation presented here are different. There, although the
methodology is bkasialy the same, the case of the tip excited wedge
is handled as an object which is different from that of a plane wave
excited wedge. Also. the solutions are rather involved. At a vari-
ance. here it is shown that the solution for the caue we are presently
concerned is directly and simply obtained from that for a plane wave
illumination [4], when a spectrum representation of the field is used.
Furthermore our result is uniformly valid at any aspect of observa-
tion.

The conceptual generality of a plane wave spectrum represents-
don suggests that the formulation presented here provides a basic
step for further extension to amea the tredmnial(3-D) case
of a pon sourc locae at the edge of a wedge.

7be organization of the presenraon is Summarized hereafter.
First, an exac integral repreentation. is obtained for the total field
(Section IM). Next, afte extractin the surface wave, contrbutions
die integral is asymptotically evaluated to give a uniform high-
bequency solution (Section MV. The Vpesence of complex poles is
properly accounted for, so thetd expression for the total field is
continuous across the diadow boundaries of the surfacewae
(51-M7. Numerical reslt are prsne in Section V.

B. FOmMAIION

Tbe geomeery for the Scattering a die edge of en impedanc
wedge is depicted inFig. 1.A line source is located at Q and the
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Electromagnetic F'ield Excited by a Line Source
Placed at the Edge of an Impedance Wedge-

- - Giuseppe Pelosi, Roberto Tiberio, and Roberto G. Rojas

* -. ~ - - - - - -Abtract-A uniform high-freqmency asolutio Is presented for Wh
-------------------- bd of. lUse source located at the edge of an impedance wedge. Surface

wae" contribution awe mzptlldty Included lato the expression for the
total bied, which ks continuous across their saldow boundaries.3

In several practical applications, a convenient location for wire
.4.4 and slot antennas is found near and at the tip of an edge joining two

THETA (DEGREES)alotfasufcs n hogy gFig. 2. Monostatic RCS for an anisotropic ellipsoid of revolution. consist of composite materials, which may be usefuiy modeled by
surface impedance boundary conditions. In order to analyze these
configurations, the canonical problem of an impedance wedge ex-

and that %,, and 71,, are independent of the azimuthal angle. cited by a source located at its. edge is relevant.
Then the backscattered field of the body S in the axial Recently, a high-frequency solution has been presented for the
direction wil be zeo diffraction by a wedge with surface impedanc faces, when the

The proof of this theorem follows exactly that given in III and source and the observation points are located at finite distances from
therefore will be omnitted. its edge [ll. There high-frequency expressions for the total field are

given in the format of the uniform GTD (UTD). In this communumca-m
MD. NumUIcAL DEMoNsrRA1oN OF TIE ScA1~RNam tion. the above formulation is extended to describe the scattering *

Titaoazim phenomenon when a line source is placed right at the edge of the -
In the following, a numerical demonstration of the two theorems impedance wedge. ALSO in this case, the solution to this canonical

given above is presented. In producing these numerical calculations problem is obtained in a rigorous and very simple fashion, byU
we modified a code for PEC scatterers written in the McDonnell employing a plane wave spectrum formulation. The same problem
Douglas Research Laboratories [21 to include an anisotropic surface wa-s trated earlier [21, (3). However, both the approach and the
impedance boundary condition. In Fig. 2 we show the monostatic forimulation presented here are differrent. There, although the
H- and V-pol RCS for an ellipsoid of revolution. The two surface methodology is basically the same. the case of the tip excited wedge3

impeance (i,, ad i~) ae cosento b imginay. he cndiio s handled as an object which is differrent from that of a plane wave
of Theorems I and 2 are satisfied. The coincidence of the two RCS excited wedge. Also, the solutions are father involved. At a vari-
curves serve to demonstrate Theorem!1, while the zero RCS in the ance. here it is shown that the solution for the case we are presently
axial directions (09-0 and 180) serve to demonstrate Theorem 2. concerned is directly and simply obtained from that for a plane wave3

illumination 141, when a spectrum representation of the field is used.-
IV. CONCLUJSN Furthermore, our result is uniformly valid at any aspect of observe.

We have proved two RCS theorems in this communication for tion.~o ln aesetz ersns
anisotropic surface boundary conditions. They constitute an exten- Ti e oncsgeststhat thnefrmulati on presnted haersem proiesea bsi
sion of Weston's two theorems because we require only that linsgessdete omltonpeetd e rvde ai
- 1 instead of qj,, - I and ilo - 1. We have also demonstrated. step for further extension to treat the three-dimensional (3-D) case
through some numerical examples, the truth of these theorems. We of a point source located at the edge of a wedge.3
believe that the theorems can serve to check new MoM-BOR-IBC The organization of the presentation is sumnmarized hereafter.*

codes.First, an exact integral representation* is obtained for the total field
(Section IM). Next, after extracting the surface wave, cotributions

AcxHOLEDGM~rthe integral is asymptotically evaluated to give a uniform high-
Our physicist colleague, David Ingham and Gar Niz, tried to frequency solution (Section MV. The presence of complex poles is

convnceus, n p y~ ~j~ ~ f ~properly accounted for, so that the expression for the total field isconvnceu. n phsicl goun. di cu ofthecontinuousn across the shadow boundaries of tie surface wavesWeston theorems. This communaication is the result Of ourl aneinpt [51-[M. Numerical results are ;presen- ed in Section V.
to understand in detail these facts which we observe from our code
outputs. We appreciate helpfuil discussions with them. We thak Dr. 11. FonAsLMA71O
Johns Podan for usefl discusswios. Finally, we awe very grtful Te Wemetr ft fte scattering a t deedge of an impedane

*that Yen Yamada share with us anid understands our wnorking wedge is depicted in Fig. 1. A lioe source is located at Q and the
philosophy through which the writing of this conmumnication is
pOWsb Manscript received March 5, I190; reviaed Nowunber 29, 1990. This

work was supported in pan by the Joint Servic Programn under Comnct
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Fig. 2. Geometry for dhe pl-ne wave response of dte wedge.

Fig. 1. Geometry for the scattering a the de of an impedance wedg.
It has been shown 81 that a mnsform relationship can be

observation point at P; its location in a polar coordinate system between F(p) (Q) and f( in (2). via the tra
with its origin at Q. is denoted by (r. 0). The exterior angle of the sin p W
wedge is sri. Two different uniform isotropic. arbitrary impedance Sin) Cj- di (4
boundary conditions may be imposed on the tworf T f(•) - - o F(p)facs . (4)
impedances of the 0 and nr faces are denoted by Zo and Z a,. i
respectively; Zo.,, are complex numbers whose real pan. because of a(2); provided that f( is an Odd function. Consequently. it is
energy considerations, must be non-negative. The following nota- e seen that
ton will be used to describe the boundary conditions for an electric F(0) - ±2if(.joo) (5)
(TM. e) and a magnetic (TE, h) line source which yields the following exact expression for the total field at Q:

sin0-Z,/Z~,; sin9- Z,/Z,. p=On (1) 2 1 &(a)(sinn(a/un)

in which Z, is the free-space impedance. Throughout the paper. ((Q) - -g.(a) - , . + o o ( - (6)
superscripts e and h are suppressed: the TM and TE cases are s n"sin - o os -
treated together and the expressions presented later on apply to both 2n

cases, provided that the proper value for 0' A is used. A harmonic where
time dependence exp (jot) is assumed and suppressed.

The procedure adopted in this communication may be summa- *.(nw - a - - 0- -

rued as follows. 2 (2) 2 ('
I) First. by virtue of reciprocity a uniform line source is located *a FT- a- + o f- + 0 (7)

a P and the observation point at the edge Q. The incident field
from the source is represented by its plane wave spectrum.

2) Next. the plane wave response at Q of the wedge is found is a regular function, and t,, is the Maliuzhinets special function
from the exact integral representation given in 141. [4]. In deriving (6), the asymptotic property of t, for Ilm(() I -

3) Then, an exact integral representation for the total field at Q is a has been used. Also, it was found useful to employ the expres-
obtained by superposition of the above spectrum components. Thus sion of the auxiliary function inroduced by Maliuzhinets. which
aain by reciprocity, it provides the desired expression for the field puts the complex electric poles into an explicit trigonometric form.
at P due to a line source at Q. Equation (6) is the desired plane wave response at Q of the wedge.

4) Finally, this integral representation is asymptotically evaluated LAt us now consider a unit, uniform line source located at P
to obtain our uniform high frequency solution. (Fig. I) and the plane wave spectrum representation of its field. In

Steps 1-3 ae described in the next section and step 4 in Section order to determine its field at 2, firm the above plane wave response
Iv. (8) is analytically continued imo complex space. Next, the spectrum

of the field from the source at P is weighted by O(Q), to give by
M. WnKTEOAL REPRESET•TATION superposition an exact integral representation for the total field u at

A basic step within the context of a plane wave spectrum repre- the edge of the wedge:

enmation. is that of obtaining the plane wave response 1 of the 2e-,j/4
wedge. ts expression for the field at Q is now found by using the (8)

exact solution given in (4). A comnvenient expression for the total
feld at a point q' - (p, a, due a aunit plane wave incidemt on In (g) the conour of itegration C eis e (-J, r + j() when
diedgeofthwedgefromadirection a, as depictedinFig. 2. is * S mw/2 or (--v -- j, +jW) when #a oir/2.

By reciprocity, (8) also provides th required representation for
""(q1 l)- "Jh-mldt Id (2) the field u at any point P due to a line source at the edge Q. It is

2 ,ja noted that when 9, = G9 , Is "ibits the expected symmetry for

"where is the Sommerfed contour of integration, k is the propaga- P'(r, ) and Py = (r, nfr - #). Furthermore, for a perfectly con-

dIon c t, and duing wedge it is sen that
ie) - Sl; a. a')-lS- 1;.'] (3) U- -W 2 -j-14oy•a(kr) (9)

2 nF
I M odd fmncuton of 1, in which S(; a, a') is the spectrum intheTEcawe( 0 -m.-mO)andu-0 intheTMcase. Thefield
I Obtained by lMalnzhinets.(41. [11. Expression (3) is simply of an electric line source (TM) also vanishes when any one of the
a coua0lence of the symmetry of the contour -; its usefulness is two faces is perfectly conducting. An uniform high-frequency ap-
explained newt. proximation of u for kr large is presented in the next section.
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Before proceeding further, it is worth pointing out that whenever I
the spectrum of a Sommerfeld integral representation of the re-

sponse of a wedge is known for an arbitrarily incident plane wave
(0, 0), the field D(O. 0) at a point Q on the edge is easily found by
applying the concept of the transform pair (2) and (4). This can be Idone for exam ple for im pedance w ed ges w ith exterior angles n or1. =, -- --[-,- --of-ors- -o ,- -----y- -------ed e-ith - •
1. 1.5. 2 i [9], and of course for a perfectly conducting wedge with 9~ - - - - - - -

any n. Then, this expression for D(,. 4) can be used to weight the
double spectral integral representation of a source in the 3-D space.
It provides the extension to the 3-D case of the formulation pre:
sented so far; however, this will be discussed in a subsequent paper 11
and compared with (10]. Z .. •.4Z

IV. HIGm-FREQUENCY SOLUTION . °'0"22€ '
In order to obtain a high-frequency solution, it is useful to deform ----. 'n" 2 "Zc

the contour of integration in (8) onto a steepest descent path (SDP)
through the saddle point at a - 0. When a surface wave is excited
on either faces of the wedge, a surface wave pole a - i-p.p - 1 nL 45. ao L 10 a 225. M 31L W. I
(p -O0.n. 0- - 00 ,% = n r+ 0.) maybe captured indie con-
tour deformation process if either 0 < ao or * > ni - a., in (a)
which I

aT s -6,,- gd(O,,,)sgnr(0,,) (10) - o- 0 . 2 ZC , zn--jO.Izc

where .gd denotes the Gudermann function and 9, = Op p - AOM, -J,.. .Z c Zdj2"Zc
Thus. its residue contribution may occur in the solution, in addition
to the contribution from the SDP integration.

Then. the integral along the SDP is asymptotically evaluated by j , ---------.

applying the procedure suggested in [51-[71, so that the crossing of
a pole through the SDP is properly accounted for. It yields a , /

uniform high-frequency solution for the total field u: 1 "

U - U0  U, , z

in which p - , n. k zn' p

+, - ( - U,(,.,)(2 v,,)

where (

s(qI n)+ SOW~] [ SOl) + sUI(o)l1 3 (b)
g,S( ,1s) +s()] [s((') +s,,(*)] (13) Fig. 3. Field radiated by a line source located at the edge ofan impdance'(s, )[ s ()] [SOW -s.(0) h.,f-plane (n - 2) where r - 10 X. (a) Elic line source. (b) Magnetic

s,(iq) - v/2sins (-- ) ; s(q) - V2"sin ( !-ý-) (14) line source.

22 V. Nummuc.A Rnsuus 3
.) = for p1 f 0b a < ao, pin-na >nn-a The solution presented in the previous section has been applied to

h(a, a,) = 0 o therw•se calculate the field of both electric and magnetic line sources for

(15) several wedge angle! and differem impedance boundary conditions.

and F(z) is the UrD tasition function (il generalized to a The results obtained in some examples are presented next, to
complex argument asin[121, [131. analyze the effect of the electric properties of the wedge on the• e qp •t i 1) 11excitai of thescatering mchanisms. I,, par•ticlr, th ufc

The compact expression (12) is applicable to any ni wedge wavexcittion of I

nge. Also it provides a clear physical description of the scatteting The field radiated a a distance r = 10\ by a line source located
phenomenon. It is indeed easily seen that the term multiplying at the edge of an impedance half-plane (n - 2) is plotted in Fig.
h(a, a,) is the field of the surface wave; its discontinuity is 3(a) and (b).
compensated by the pertinent transition function. Thus, the field is Different purely reactive surface impedance boundary conditions
smooth and continuous across the shadow boundaries of the surface (IBC's) are imposed on the faces of the half-plane. A surface wave
waves, is excited 1) on the aw face by an electric line source (ELS) and 2)

h should be noted that when a surface wave can nm be supported on the 0 face by a magnetic line source (MLS). Fig. 3(a) shows that i
by the pt face of the wedge, i.e., when a. S 0, the'corre"onding the field becomes vanishingly small u the observation PO ap-

up term reduces to proaches the faces of the wedge. However, a strong evanescent,
n-u (16) srface wave field is excited close to the nr face. In Fig. 3(b) the

l T , 6) field patterns calculated for the sam two dfferent surface' .'7k~r"
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inductive Sraeimpedance fcs(capactive IC.Fran L

faces ~~chokes doneaecn il otiuin.Tu.at a vani-
---- z(.6j09)c, e(.6j.5:c&ueof the PE a.tefeddosdw hnapproaching either

fcsof the wde
Teabove examples emphasize that in general due to the presence

------ o thelosses the evanescent field contribution is weak aid observ-
alonyvery close to the face. Also, it is seen thttepatterns are

smohadcontinuous across the shadow budreofthe surface

Ze VI. SUMMtARY

An exact integral representation for the field radiated by a line
1Zn source located at the edge of an impedance wedge, has been

obtained. To this end, the plane wave spectrum of the source has
_____ _____ ____ been used in connection with the plane wave response of the wedge.

IM. I. am. M0 0 24&. Mj Uniform high-frequency expressions for the total field have been
0 derived from that solution. They include the description of surface

(a) wave excitation mechanisms and provide field patterns that are

___ these evanescent wave contributions. The formulation presented
61Z 0 -JO.9Zc , :,*.j1.5zc here suggests a further extension to treat three-dimensional cases.
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